↳ ITRS
↳ ITRStoIDPProof
z
eval(an, bn, cn, i, j) → Cond_eval2(&&(<@z(j, bn), <@z(i, an)), an, bn, cn, i, j)
eval(an, bn, cn, i, j) → Cond_eval1(&&(>=@z(j, bn), <@z(i, an)), an, bn, cn, i, j)
Cond_eval(TRUE, an, bn, cn, i, j) → eval(an, bn, +@z(cn, 1@z), +@z(i, 1@z), j)
eval(an, bn, cn, i, j) → Cond_eval(&&(<@z(j, bn), <@z(i, an)), an, bn, cn, i, j)
Cond_eval2(TRUE, an, bn, cn, i, j) → eval(an, bn, +@z(cn, 1@z), i, +@z(j, 1@z))
eval(an, bn, cn, i, j) → Cond_eval3(&&(<@z(j, bn), >=@z(i, an)), an, bn, cn, i, j)
Cond_eval3(TRUE, an, bn, cn, i, j) → eval(an, bn, +@z(cn, 1@z), i, +@z(j, 1@z))
Cond_eval1(TRUE, an, bn, cn, i, j) → eval(an, bn, +@z(cn, 1@z), +@z(i, 1@z), j)
eval(x0, x1, x2, x3, x4)
Cond_eval(TRUE, x0, x1, x2, x3, x4)
Cond_eval2(TRUE, x0, x1, x2, x3, x4)
Cond_eval3(TRUE, x0, x1, x2, x3, x4)
Cond_eval1(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
eval(an, bn, cn, i, j) → Cond_eval2(&&(<@z(j, bn), <@z(i, an)), an, bn, cn, i, j)
eval(an, bn, cn, i, j) → Cond_eval1(&&(>=@z(j, bn), <@z(i, an)), an, bn, cn, i, j)
Cond_eval(TRUE, an, bn, cn, i, j) → eval(an, bn, +@z(cn, 1@z), +@z(i, 1@z), j)
eval(an, bn, cn, i, j) → Cond_eval(&&(<@z(j, bn), <@z(i, an)), an, bn, cn, i, j)
Cond_eval2(TRUE, an, bn, cn, i, j) → eval(an, bn, +@z(cn, 1@z), i, +@z(j, 1@z))
eval(an, bn, cn, i, j) → Cond_eval3(&&(<@z(j, bn), >=@z(i, an)), an, bn, cn, i, j)
Cond_eval3(TRUE, an, bn, cn, i, j) → eval(an, bn, +@z(cn, 1@z), i, +@z(j, 1@z))
Cond_eval1(TRUE, an, bn, cn, i, j) → eval(an, bn, +@z(cn, 1@z), +@z(i, 1@z), j)
(0) -> (1), if ((+@z(i[0], 1@z) →* i[1])∧(j[0] →* j[1])∧(bn[0] →* bn[1])∧(+@z(cn[0], 1@z) →* cn[1])∧(an[0] →* an[1]))
(0) -> (2), if ((+@z(i[0], 1@z) →* i[2])∧(j[0] →* j[2])∧(bn[0] →* bn[2])∧(+@z(cn[0], 1@z) →* cn[2])∧(an[0] →* an[2]))
(0) -> (6), if ((+@z(i[0], 1@z) →* i[6])∧(j[0] →* j[6])∧(bn[0] →* bn[6])∧(+@z(cn[0], 1@z) →* cn[6])∧(an[0] →* an[6]))
(0) -> (7), if ((+@z(i[0], 1@z) →* i[7])∧(j[0] →* j[7])∧(bn[0] →* bn[7])∧(+@z(cn[0], 1@z) →* cn[7])∧(an[0] →* an[7]))
(1) -> (5), if ((cn[1] →* cn[5])∧(i[1] →* i[5])∧(an[1] →* an[5])∧(bn[1] →* bn[5])∧(j[1] →* j[5])∧(&&(<@z(j[1], bn[1]), <@z(i[1], an[1])) →* TRUE))
(2) -> (4), if ((cn[2] →* cn[4])∧(i[2] →* i[4])∧(an[2] →* an[4])∧(bn[2] →* bn[4])∧(j[2] →* j[4])∧(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])) →* TRUE))
(3) -> (1), if ((i[3] →* i[1])∧(+@z(j[3], 1@z) →* j[1])∧(bn[3] →* bn[1])∧(+@z(cn[3], 1@z) →* cn[1])∧(an[3] →* an[1]))
(3) -> (2), if ((i[3] →* i[2])∧(+@z(j[3], 1@z) →* j[2])∧(bn[3] →* bn[2])∧(+@z(cn[3], 1@z) →* cn[2])∧(an[3] →* an[2]))
(3) -> (6), if ((i[3] →* i[6])∧(+@z(j[3], 1@z) →* j[6])∧(bn[3] →* bn[6])∧(+@z(cn[3], 1@z) →* cn[6])∧(an[3] →* an[6]))
(3) -> (7), if ((i[3] →* i[7])∧(+@z(j[3], 1@z) →* j[7])∧(bn[3] →* bn[7])∧(+@z(cn[3], 1@z) →* cn[7])∧(an[3] →* an[7]))
(4) -> (1), if ((+@z(i[4], 1@z) →* i[1])∧(j[4] →* j[1])∧(bn[4] →* bn[1])∧(+@z(cn[4], 1@z) →* cn[1])∧(an[4] →* an[1]))
(4) -> (2), if ((+@z(i[4], 1@z) →* i[2])∧(j[4] →* j[2])∧(bn[4] →* bn[2])∧(+@z(cn[4], 1@z) →* cn[2])∧(an[4] →* an[2]))
(4) -> (6), if ((+@z(i[4], 1@z) →* i[6])∧(j[4] →* j[6])∧(bn[4] →* bn[6])∧(+@z(cn[4], 1@z) →* cn[6])∧(an[4] →* an[6]))
(4) -> (7), if ((+@z(i[4], 1@z) →* i[7])∧(j[4] →* j[7])∧(bn[4] →* bn[7])∧(+@z(cn[4], 1@z) →* cn[7])∧(an[4] →* an[7]))
(5) -> (1), if ((i[5] →* i[1])∧(+@z(j[5], 1@z) →* j[1])∧(bn[5] →* bn[1])∧(+@z(cn[5], 1@z) →* cn[1])∧(an[5] →* an[1]))
(5) -> (2), if ((i[5] →* i[2])∧(+@z(j[5], 1@z) →* j[2])∧(bn[5] →* bn[2])∧(+@z(cn[5], 1@z) →* cn[2])∧(an[5] →* an[2]))
(5) -> (6), if ((i[5] →* i[6])∧(+@z(j[5], 1@z) →* j[6])∧(bn[5] →* bn[6])∧(+@z(cn[5], 1@z) →* cn[6])∧(an[5] →* an[6]))
(5) -> (7), if ((i[5] →* i[7])∧(+@z(j[5], 1@z) →* j[7])∧(bn[5] →* bn[7])∧(+@z(cn[5], 1@z) →* cn[7])∧(an[5] →* an[7]))
(6) -> (0), if ((cn[6] →* cn[0])∧(i[6] →* i[0])∧(an[6] →* an[0])∧(bn[6] →* bn[0])∧(j[6] →* j[0])∧(&&(<@z(j[6], bn[6]), <@z(i[6], an[6])) →* TRUE))
(7) -> (3), if ((cn[7] →* cn[3])∧(i[7] →* i[3])∧(an[7] →* an[3])∧(bn[7] →* bn[3])∧(j[7] →* j[3])∧(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])) →* TRUE))
eval(x0, x1, x2, x3, x4)
Cond_eval(TRUE, x0, x1, x2, x3, x4)
Cond_eval2(TRUE, x0, x1, x2, x3, x4)
Cond_eval3(TRUE, x0, x1, x2, x3, x4)
Cond_eval1(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (1), if ((+@z(i[0], 1@z) →* i[1])∧(j[0] →* j[1])∧(bn[0] →* bn[1])∧(+@z(cn[0], 1@z) →* cn[1])∧(an[0] →* an[1]))
(0) -> (2), if ((+@z(i[0], 1@z) →* i[2])∧(j[0] →* j[2])∧(bn[0] →* bn[2])∧(+@z(cn[0], 1@z) →* cn[2])∧(an[0] →* an[2]))
(0) -> (6), if ((+@z(i[0], 1@z) →* i[6])∧(j[0] →* j[6])∧(bn[0] →* bn[6])∧(+@z(cn[0], 1@z) →* cn[6])∧(an[0] →* an[6]))
(0) -> (7), if ((+@z(i[0], 1@z) →* i[7])∧(j[0] →* j[7])∧(bn[0] →* bn[7])∧(+@z(cn[0], 1@z) →* cn[7])∧(an[0] →* an[7]))
(1) -> (5), if ((cn[1] →* cn[5])∧(i[1] →* i[5])∧(an[1] →* an[5])∧(bn[1] →* bn[5])∧(j[1] →* j[5])∧(&&(<@z(j[1], bn[1]), <@z(i[1], an[1])) →* TRUE))
(2) -> (4), if ((cn[2] →* cn[4])∧(i[2] →* i[4])∧(an[2] →* an[4])∧(bn[2] →* bn[4])∧(j[2] →* j[4])∧(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])) →* TRUE))
(3) -> (1), if ((i[3] →* i[1])∧(+@z(j[3], 1@z) →* j[1])∧(bn[3] →* bn[1])∧(+@z(cn[3], 1@z) →* cn[1])∧(an[3] →* an[1]))
(3) -> (2), if ((i[3] →* i[2])∧(+@z(j[3], 1@z) →* j[2])∧(bn[3] →* bn[2])∧(+@z(cn[3], 1@z) →* cn[2])∧(an[3] →* an[2]))
(3) -> (6), if ((i[3] →* i[6])∧(+@z(j[3], 1@z) →* j[6])∧(bn[3] →* bn[6])∧(+@z(cn[3], 1@z) →* cn[6])∧(an[3] →* an[6]))
(3) -> (7), if ((i[3] →* i[7])∧(+@z(j[3], 1@z) →* j[7])∧(bn[3] →* bn[7])∧(+@z(cn[3], 1@z) →* cn[7])∧(an[3] →* an[7]))
(4) -> (1), if ((+@z(i[4], 1@z) →* i[1])∧(j[4] →* j[1])∧(bn[4] →* bn[1])∧(+@z(cn[4], 1@z) →* cn[1])∧(an[4] →* an[1]))
(4) -> (2), if ((+@z(i[4], 1@z) →* i[2])∧(j[4] →* j[2])∧(bn[4] →* bn[2])∧(+@z(cn[4], 1@z) →* cn[2])∧(an[4] →* an[2]))
(4) -> (6), if ((+@z(i[4], 1@z) →* i[6])∧(j[4] →* j[6])∧(bn[4] →* bn[6])∧(+@z(cn[4], 1@z) →* cn[6])∧(an[4] →* an[6]))
(4) -> (7), if ((+@z(i[4], 1@z) →* i[7])∧(j[4] →* j[7])∧(bn[4] →* bn[7])∧(+@z(cn[4], 1@z) →* cn[7])∧(an[4] →* an[7]))
(5) -> (1), if ((i[5] →* i[1])∧(+@z(j[5], 1@z) →* j[1])∧(bn[5] →* bn[1])∧(+@z(cn[5], 1@z) →* cn[1])∧(an[5] →* an[1]))
(5) -> (2), if ((i[5] →* i[2])∧(+@z(j[5], 1@z) →* j[2])∧(bn[5] →* bn[2])∧(+@z(cn[5], 1@z) →* cn[2])∧(an[5] →* an[2]))
(5) -> (6), if ((i[5] →* i[6])∧(+@z(j[5], 1@z) →* j[6])∧(bn[5] →* bn[6])∧(+@z(cn[5], 1@z) →* cn[6])∧(an[5] →* an[6]))
(5) -> (7), if ((i[5] →* i[7])∧(+@z(j[5], 1@z) →* j[7])∧(bn[5] →* bn[7])∧(+@z(cn[5], 1@z) →* cn[7])∧(an[5] →* an[7]))
(6) -> (0), if ((cn[6] →* cn[0])∧(i[6] →* i[0])∧(an[6] →* an[0])∧(bn[6] →* bn[0])∧(j[6] →* j[0])∧(&&(<@z(j[6], bn[6]), <@z(i[6], an[6])) →* TRUE))
(7) -> (3), if ((cn[7] →* cn[3])∧(i[7] →* i[3])∧(an[7] →* an[3])∧(bn[7] →* bn[3])∧(j[7] →* j[3])∧(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])) →* TRUE))
eval(x0, x1, x2, x3, x4)
Cond_eval(TRUE, x0, x1, x2, x3, x4)
Cond_eval2(TRUE, x0, x1, x2, x3, x4)
Cond_eval3(TRUE, x0, x1, x2, x3, x4)
Cond_eval1(TRUE, x0, x1, x2, x3, x4)
(1) (&&(<@z(j[6], bn[6]), <@z(i[6], an[6]))=TRUE∧j[6]=j[0]∧cn[6]=cn[0]∧an[6]=an[0]∧bn[6]=bn[0]∧i[6]=i[0] ⇒ COND_EVAL(TRUE, an[0], bn[0], cn[0], i[0], j[0])≥NonInfC∧COND_EVAL(TRUE, an[0], bn[0], cn[0], i[0], j[0])≥EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥))
(2) (<@z(j[6], bn[6])=TRUE∧<@z(i[6], an[6])=TRUE ⇒ COND_EVAL(TRUE, an[6], bn[6], cn[6], i[6], j[6])≥NonInfC∧COND_EVAL(TRUE, an[6], bn[6], cn[6], i[6], j[6])≥EVAL(an[6], bn[6], +@z(cn[6], 1@z), +@z(i[6], 1@z), j[6])∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥))
(3) (bn[6] + -1 + (-1)j[6] ≥ 0∧-1 + an[6] + (-1)i[6] ≥ 0 ⇒ (UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 ≥ 0∧1 ≥ 0)
(4) (bn[6] + -1 + (-1)j[6] ≥ 0∧-1 + an[6] + (-1)i[6] ≥ 0 ⇒ (UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 ≥ 0∧1 ≥ 0)
(5) (bn[6] + -1 + (-1)j[6] ≥ 0∧-1 + an[6] + (-1)i[6] ≥ 0 ⇒ (UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧1 ≥ 0∧0 ≥ 0)
(6) (bn[6] + -1 + (-1)j[6] ≥ 0∧-1 + an[6] + (-1)i[6] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0)
(7) (bn[6] ≥ 0∧-1 + an[6] + (-1)i[6] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0)
(8) (bn[6] ≥ 0∧i[6] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0)
(9) (bn[6] ≥ 0∧i[6] ≥ 0∧j[6] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0)
(10) (bn[6] ≥ 0∧i[6] ≥ 0∧j[6] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0)
(11) (bn[6] ≥ 0∧i[6] ≥ 0∧j[6] ≥ 0∧an[6] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0)
(12) (bn[6] ≥ 0∧i[6] ≥ 0∧j[6] ≥ 0∧an[6] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0)
(13) (bn[6] ≥ 0∧i[6] ≥ 0∧j[6] ≥ 0∧an[6] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0)
(14) (bn[6] ≥ 0∧i[6] ≥ 0∧j[6] ≥ 0∧an[6] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0)
(15) (EVAL(an[1], bn[1], cn[1], i[1], j[1])≥NonInfC∧EVAL(an[1], bn[1], cn[1], i[1], j[1])≥COND_EVAL2(&&(<@z(j[1], bn[1]), <@z(i[1], an[1])), an[1], bn[1], cn[1], i[1], j[1])∧(UIncreasing(COND_EVAL2(&&(<@z(j[1], bn[1]), <@z(i[1], an[1])), an[1], bn[1], cn[1], i[1], j[1])), ≥))
(16) ((UIncreasing(COND_EVAL2(&&(<@z(j[1], bn[1]), <@z(i[1], an[1])), an[1], bn[1], cn[1], i[1], j[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(17) ((UIncreasing(COND_EVAL2(&&(<@z(j[1], bn[1]), <@z(i[1], an[1])), an[1], bn[1], cn[1], i[1], j[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(18) (0 ≥ 0∧(UIncreasing(COND_EVAL2(&&(<@z(j[1], bn[1]), <@z(i[1], an[1])), an[1], bn[1], cn[1], i[1], j[1])), ≥)∧0 ≥ 0)
(19) (0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL2(&&(<@z(j[1], bn[1]), <@z(i[1], an[1])), an[1], bn[1], cn[1], i[1], j[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0)
(20) (EVAL(an[2], bn[2], cn[2], i[2], j[2])≥NonInfC∧EVAL(an[2], bn[2], cn[2], i[2], j[2])≥COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])∧(UIncreasing(COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])), ≥))
(21) ((UIncreasing(COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])), ≥)∧0 ≥ 0∧1 ≥ 0)
(22) ((UIncreasing(COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])), ≥)∧0 ≥ 0∧1 ≥ 0)
(23) (1 ≥ 0∧(UIncreasing(COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])), ≥)∧0 ≥ 0)
(24) (0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])), ≥)∧0 = 0∧1 ≥ 0∧0 = 0∧0 = 0)
(25) (i[7]=i[3]∧bn[7]=bn[3]∧cn[7]=cn[3]∧an[7]=an[3]∧j[7]=j[3]∧&&(<@z(j[7], bn[7]), >=@z(i[7], an[7]))=TRUE ⇒ COND_EVAL3(TRUE, an[3], bn[3], cn[3], i[3], j[3])≥NonInfC∧COND_EVAL3(TRUE, an[3], bn[3], cn[3], i[3], j[3])≥EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥))
(26) (<@z(j[7], bn[7])=TRUE∧>=@z(i[7], an[7])=TRUE ⇒ COND_EVAL3(TRUE, an[7], bn[7], cn[7], i[7], j[7])≥NonInfC∧COND_EVAL3(TRUE, an[7], bn[7], cn[7], i[7], j[7])≥EVAL(an[7], bn[7], +@z(cn[7], 1@z), i[7], +@z(j[7], 1@z))∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥))
(27) (-1 + bn[7] + (-1)j[7] ≥ 0∧i[7] + (-1)an[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 ≥ 0∧1 ≥ 0)
(28) (-1 + bn[7] + (-1)j[7] ≥ 0∧i[7] + (-1)an[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 ≥ 0∧1 ≥ 0)
(29) (-1 + bn[7] + (-1)j[7] ≥ 0∧i[7] + (-1)an[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧1 ≥ 0∧0 ≥ 0)
(30) (-1 + bn[7] + (-1)j[7] ≥ 0∧i[7] + (-1)an[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 ≥ 0∧0 = 0∧1 ≥ 0∧0 = 0)
(31) (-1 + bn[7] + (-1)j[7] ≥ 0∧an[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 ≥ 0∧0 = 0∧1 ≥ 0∧0 = 0)
(32) (j[7] ≥ 0∧an[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 ≥ 0∧0 = 0∧1 ≥ 0∧0 = 0)
(33) (j[7] ≥ 0∧an[7] ≥ 0∧i[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 ≥ 0∧0 = 0∧1 ≥ 0∧0 = 0)
(34) (j[7] ≥ 0∧an[7] ≥ 0∧i[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 ≥ 0∧0 = 0∧1 ≥ 0∧0 = 0)
(35) (j[7] ≥ 0∧an[7] ≥ 0∧i[7] ≥ 0∧bn[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 ≥ 0∧0 = 0∧1 ≥ 0∧0 = 0)
(36) (j[7] ≥ 0∧an[7] ≥ 0∧i[7] ≥ 0∧bn[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 ≥ 0∧0 = 0∧1 ≥ 0∧0 = 0)
(37) (j[7] ≥ 0∧an[7] ≥ 0∧i[7] ≥ 0∧bn[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 ≥ 0∧0 = 0∧1 ≥ 0∧0 = 0)
(38) (j[7] ≥ 0∧an[7] ≥ 0∧i[7] ≥ 0∧bn[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 ≥ 0∧0 = 0∧1 ≥ 0∧0 = 0)
(39) (&&(>=@z(j[2], bn[2]), <@z(i[2], an[2]))=TRUE∧an[2]=an[4]∧i[2]=i[4]∧bn[2]=bn[4]∧cn[2]=cn[4]∧j[2]=j[4] ⇒ COND_EVAL1(TRUE, an[4], bn[4], cn[4], i[4], j[4])≥NonInfC∧COND_EVAL1(TRUE, an[4], bn[4], cn[4], i[4], j[4])≥EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(40) (>=@z(j[2], bn[2])=TRUE∧<@z(i[2], an[2])=TRUE ⇒ COND_EVAL1(TRUE, an[2], bn[2], cn[2], i[2], j[2])≥NonInfC∧COND_EVAL1(TRUE, an[2], bn[2], cn[2], i[2], j[2])≥EVAL(an[2], bn[2], +@z(cn[2], 1@z), +@z(i[2], 1@z), j[2])∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(41) (j[2] + (-1)bn[2] ≥ 0∧-1 + an[2] + (-1)i[2] ≥ 0 ⇒ (UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(42) (j[2] + (-1)bn[2] ≥ 0∧-1 + an[2] + (-1)i[2] ≥ 0 ⇒ (UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(43) (-1 + an[2] + (-1)i[2] ≥ 0∧j[2] + (-1)bn[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 ≥ 0)
(44) (-1 + an[2] + (-1)i[2] ≥ 0∧j[2] + (-1)bn[2] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(45) (-1 + an[2] + (-1)i[2] ≥ 0∧bn[2] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(46) (an[2] ≥ 0∧bn[2] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(47) (an[2] ≥ 0∧bn[2] ≥ 0∧i[2] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(48) (an[2] ≥ 0∧bn[2] ≥ 0∧i[2] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(49) (an[2] ≥ 0∧bn[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(50) (an[2] ≥ 0∧bn[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(51) (an[2] ≥ 0∧bn[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(52) (an[2] ≥ 0∧bn[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(53) (i[1]=i[5]∧cn[1]=cn[5]∧an[1]=an[5]∧bn[1]=bn[5]∧j[1]=j[5]∧&&(<@z(j[1], bn[1]), <@z(i[1], an[1]))=TRUE ⇒ COND_EVAL2(TRUE, an[5], bn[5], cn[5], i[5], j[5])≥NonInfC∧COND_EVAL2(TRUE, an[5], bn[5], cn[5], i[5], j[5])≥EVAL(an[5], bn[5], +@z(cn[5], 1@z), i[5], +@z(j[5], 1@z))∧(UIncreasing(EVAL(an[5], bn[5], +@z(cn[5], 1@z), i[5], +@z(j[5], 1@z))), ≥))
(54) (<@z(j[1], bn[1])=TRUE∧<@z(i[1], an[1])=TRUE ⇒ COND_EVAL2(TRUE, an[1], bn[1], cn[1], i[1], j[1])≥NonInfC∧COND_EVAL2(TRUE, an[1], bn[1], cn[1], i[1], j[1])≥EVAL(an[1], bn[1], +@z(cn[1], 1@z), i[1], +@z(j[1], 1@z))∧(UIncreasing(EVAL(an[5], bn[5], +@z(cn[5], 1@z), i[5], +@z(j[5], 1@z))), ≥))
(55) (-1 + bn[1] + (-1)j[1] ≥ 0∧an[1] + -1 + (-1)i[1] ≥ 0 ⇒ (UIncreasing(EVAL(an[5], bn[5], +@z(cn[5], 1@z), i[5], +@z(j[5], 1@z))), ≥)∧-1 + (-1)Bound + (-1)j[1] + (-1)i[1] + bn[1] + an[1] ≥ 0∧0 ≥ 0)
(56) (-1 + bn[1] + (-1)j[1] ≥ 0∧an[1] + -1 + (-1)i[1] ≥ 0 ⇒ (UIncreasing(EVAL(an[5], bn[5], +@z(cn[5], 1@z), i[5], +@z(j[5], 1@z))), ≥)∧-1 + (-1)Bound + (-1)j[1] + (-1)i[1] + bn[1] + an[1] ≥ 0∧0 ≥ 0)
(57) (-1 + bn[1] + (-1)j[1] ≥ 0∧an[1] + -1 + (-1)i[1] ≥ 0 ⇒ (UIncreasing(EVAL(an[5], bn[5], +@z(cn[5], 1@z), i[5], +@z(j[5], 1@z))), ≥)∧-1 + (-1)Bound + (-1)j[1] + (-1)i[1] + bn[1] + an[1] ≥ 0∧0 ≥ 0)
(58) (-1 + bn[1] + (-1)j[1] ≥ 0∧an[1] + -1 + (-1)i[1] ≥ 0 ⇒ 0 ≥ 0∧-1 + (-1)Bound + (-1)j[1] + (-1)i[1] + bn[1] + an[1] ≥ 0∧(UIncreasing(EVAL(an[5], bn[5], +@z(cn[5], 1@z), i[5], +@z(j[5], 1@z))), ≥)∧0 = 0∧0 = 0)
(59) (j[1] ≥ 0∧an[1] + -1 + (-1)i[1] ≥ 0 ⇒ 0 ≥ 0∧(-1)Bound + j[1] + (-1)i[1] + an[1] ≥ 0∧(UIncreasing(EVAL(an[5], bn[5], +@z(cn[5], 1@z), i[5], +@z(j[5], 1@z))), ≥)∧0 = 0∧0 = 0)
(60) (j[1] ≥ 0∧an[1] ≥ 0 ⇒ 0 ≥ 0∧1 + (-1)Bound + j[1] + an[1] ≥ 0∧(UIncreasing(EVAL(an[5], bn[5], +@z(cn[5], 1@z), i[5], +@z(j[5], 1@z))), ≥)∧0 = 0∧0 = 0)
(61) (j[1] ≥ 0∧an[1] ≥ 0∧bn[1] ≥ 0 ⇒ 0 ≥ 0∧1 + (-1)Bound + j[1] + an[1] ≥ 0∧(UIncreasing(EVAL(an[5], bn[5], +@z(cn[5], 1@z), i[5], +@z(j[5], 1@z))), ≥)∧0 = 0∧0 = 0)
(62) (j[1] ≥ 0∧an[1] ≥ 0∧bn[1] ≥ 0 ⇒ 0 ≥ 0∧1 + (-1)Bound + j[1] + an[1] ≥ 0∧(UIncreasing(EVAL(an[5], bn[5], +@z(cn[5], 1@z), i[5], +@z(j[5], 1@z))), ≥)∧0 = 0∧0 = 0)
(63) (j[1] ≥ 0∧an[1] ≥ 0∧bn[1] ≥ 0∧i[1] ≥ 0 ⇒ 0 ≥ 0∧1 + (-1)Bound + j[1] + an[1] ≥ 0∧(UIncreasing(EVAL(an[5], bn[5], +@z(cn[5], 1@z), i[5], +@z(j[5], 1@z))), ≥)∧0 = 0∧0 = 0)
(64) (j[1] ≥ 0∧an[1] ≥ 0∧bn[1] ≥ 0∧i[1] ≥ 0 ⇒ 0 ≥ 0∧1 + (-1)Bound + j[1] + an[1] ≥ 0∧(UIncreasing(EVAL(an[5], bn[5], +@z(cn[5], 1@z), i[5], +@z(j[5], 1@z))), ≥)∧0 = 0∧0 = 0)
(65) (j[1] ≥ 0∧an[1] ≥ 0∧bn[1] ≥ 0∧i[1] ≥ 0 ⇒ 0 ≥ 0∧1 + (-1)Bound + j[1] + an[1] ≥ 0∧(UIncreasing(EVAL(an[5], bn[5], +@z(cn[5], 1@z), i[5], +@z(j[5], 1@z))), ≥)∧0 = 0∧0 = 0)
(66) (j[1] ≥ 0∧an[1] ≥ 0∧bn[1] ≥ 0∧i[1] ≥ 0 ⇒ 0 ≥ 0∧1 + (-1)Bound + j[1] + an[1] ≥ 0∧(UIncreasing(EVAL(an[5], bn[5], +@z(cn[5], 1@z), i[5], +@z(j[5], 1@z))), ≥)∧0 = 0∧0 = 0)
(67) (EVAL(an[6], bn[6], cn[6], i[6], j[6])≥NonInfC∧EVAL(an[6], bn[6], cn[6], i[6], j[6])≥COND_EVAL(&&(<@z(j[6], bn[6]), <@z(i[6], an[6])), an[6], bn[6], cn[6], i[6], j[6])∧(UIncreasing(COND_EVAL(&&(<@z(j[6], bn[6]), <@z(i[6], an[6])), an[6], bn[6], cn[6], i[6], j[6])), ≥))
(68) ((UIncreasing(COND_EVAL(&&(<@z(j[6], bn[6]), <@z(i[6], an[6])), an[6], bn[6], cn[6], i[6], j[6])), ≥)∧0 ≥ 0∧0 ≥ 0)
(69) ((UIncreasing(COND_EVAL(&&(<@z(j[6], bn[6]), <@z(i[6], an[6])), an[6], bn[6], cn[6], i[6], j[6])), ≥)∧0 ≥ 0∧0 ≥ 0)
(70) ((UIncreasing(COND_EVAL(&&(<@z(j[6], bn[6]), <@z(i[6], an[6])), an[6], bn[6], cn[6], i[6], j[6])), ≥)∧0 ≥ 0∧0 ≥ 0)
(71) (0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(COND_EVAL(&&(<@z(j[6], bn[6]), <@z(i[6], an[6])), an[6], bn[6], cn[6], i[6], j[6])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(72) (EVAL(an[7], bn[7], cn[7], i[7], j[7])≥NonInfC∧EVAL(an[7], bn[7], cn[7], i[7], j[7])≥COND_EVAL3(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])), an[7], bn[7], cn[7], i[7], j[7])∧(UIncreasing(COND_EVAL3(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])), an[7], bn[7], cn[7], i[7], j[7])), ≥))
(73) ((UIncreasing(COND_EVAL3(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])), an[7], bn[7], cn[7], i[7], j[7])), ≥)∧0 ≥ 0∧0 ≥ 0)
(74) ((UIncreasing(COND_EVAL3(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])), an[7], bn[7], cn[7], i[7], j[7])), ≥)∧0 ≥ 0∧0 ≥ 0)
(75) (0 ≥ 0∧(UIncreasing(COND_EVAL3(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])), an[7], bn[7], cn[7], i[7], j[7])), ≥)∧0 ≥ 0)
(76) ((UIncreasing(COND_EVAL3(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])), an[7], bn[7], cn[7], i[7], j[7])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
POL(COND_EVAL2(x1, x2, x3, x4, x5, x6)) = -1 + (-1)x6 + (-1)x5 + x3 + x2
POL(COND_EVAL3(x1, x2, x3, x4, x5, x6)) = 1 + (-1)x6 + (-1)x5 + x3 + x2 + (2)x1
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(FALSE) = -1
POL(<@z(x1, x2)) = -1
POL(EVAL(x1, x2, x3, x4, x5)) = -1 + (-1)x5 + (-1)x4 + x2 + x1
POL(COND_EVAL1(x1, x2, x3, x4, x5, x6)) = -1 + (-1)x6 + (-1)x5 + x3 + x2 + x1
POL(>=@z(x1, x2)) = -1
POL(+@z(x1, x2)) = x1 + x2
POL(COND_EVAL(x1, x2, x3, x4, x5, x6)) = -1 + (-1)x6 + (-1)x5 + x3 + x2
POL(1@z) = 1
POL(undefined) = -1
COND_EVAL2(TRUE, an[5], bn[5], cn[5], i[5], j[5]) → EVAL(an[5], bn[5], +@z(cn[5], 1@z), i[5], +@z(j[5], 1@z))
COND_EVAL2(TRUE, an[5], bn[5], cn[5], i[5], j[5]) → EVAL(an[5], bn[5], +@z(cn[5], 1@z), i[5], +@z(j[5], 1@z))
COND_EVAL(TRUE, an[0], bn[0], cn[0], i[0], j[0]) → EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])
EVAL(an[1], bn[1], cn[1], i[1], j[1]) → COND_EVAL2(&&(<@z(j[1], bn[1]), <@z(i[1], an[1])), an[1], bn[1], cn[1], i[1], j[1])
EVAL(an[2], bn[2], cn[2], i[2], j[2]) → COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])
COND_EVAL3(TRUE, an[3], bn[3], cn[3], i[3], j[3]) → EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))
COND_EVAL1(TRUE, an[4], bn[4], cn[4], i[4], j[4]) → EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])
EVAL(an[6], bn[6], cn[6], i[6], j[6]) → COND_EVAL(&&(<@z(j[6], bn[6]), <@z(i[6], an[6])), an[6], bn[6], cn[6], i[6], j[6])
EVAL(an[7], bn[7], cn[7], i[7], j[7]) → COND_EVAL3(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])), an[7], bn[7], cn[7], i[7], j[7])
&&(FALSE, FALSE)1 ↔ FALSE1
&&(TRUE, TRUE)1 → TRUE1
+@z1 ↔
&&(TRUE, FALSE)1 → FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
z
(0) -> (2), if ((+@z(i[0], 1@z) →* i[2])∧(j[0] →* j[2])∧(bn[0] →* bn[2])∧(+@z(cn[0], 1@z) →* cn[2])∧(an[0] →* an[2]))
(4) -> (6), if ((+@z(i[4], 1@z) →* i[6])∧(j[4] →* j[6])∧(bn[4] →* bn[6])∧(+@z(cn[4], 1@z) →* cn[6])∧(an[4] →* an[6]))
(6) -> (0), if ((cn[6] →* cn[0])∧(i[6] →* i[0])∧(an[6] →* an[0])∧(bn[6] →* bn[0])∧(j[6] →* j[0])∧(&&(<@z(j[6], bn[6]), <@z(i[6], an[6])) →* TRUE))
(3) -> (7), if ((i[3] →* i[7])∧(+@z(j[3], 1@z) →* j[7])∧(bn[3] →* bn[7])∧(+@z(cn[3], 1@z) →* cn[7])∧(an[3] →* an[7]))
(0) -> (6), if ((+@z(i[0], 1@z) →* i[6])∧(j[0] →* j[6])∧(bn[0] →* bn[6])∧(+@z(cn[0], 1@z) →* cn[6])∧(an[0] →* an[6]))
(7) -> (3), if ((cn[7] →* cn[3])∧(i[7] →* i[3])∧(an[7] →* an[3])∧(bn[7] →* bn[3])∧(j[7] →* j[3])∧(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])) →* TRUE))
(0) -> (7), if ((+@z(i[0], 1@z) →* i[7])∧(j[0] →* j[7])∧(bn[0] →* bn[7])∧(+@z(cn[0], 1@z) →* cn[7])∧(an[0] →* an[7]))
(4) -> (2), if ((+@z(i[4], 1@z) →* i[2])∧(j[4] →* j[2])∧(bn[4] →* bn[2])∧(+@z(cn[4], 1@z) →* cn[2])∧(an[4] →* an[2]))
(2) -> (4), if ((cn[2] →* cn[4])∧(i[2] →* i[4])∧(an[2] →* an[4])∧(bn[2] →* bn[4])∧(j[2] →* j[4])∧(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])) →* TRUE))
(4) -> (7), if ((+@z(i[4], 1@z) →* i[7])∧(j[4] →* j[7])∧(bn[4] →* bn[7])∧(+@z(cn[4], 1@z) →* cn[7])∧(an[4] →* an[7]))
(3) -> (2), if ((i[3] →* i[2])∧(+@z(j[3], 1@z) →* j[2])∧(bn[3] →* bn[2])∧(+@z(cn[3], 1@z) →* cn[2])∧(an[3] →* an[2]))
(0) -> (1), if ((+@z(i[0], 1@z) →* i[1])∧(j[0] →* j[1])∧(bn[0] →* bn[1])∧(+@z(cn[0], 1@z) →* cn[1])∧(an[0] →* an[1]))
(3) -> (6), if ((i[3] →* i[6])∧(+@z(j[3], 1@z) →* j[6])∧(bn[3] →* bn[6])∧(+@z(cn[3], 1@z) →* cn[6])∧(an[3] →* an[6]))
(4) -> (1), if ((+@z(i[4], 1@z) →* i[1])∧(j[4] →* j[1])∧(bn[4] →* bn[1])∧(+@z(cn[4], 1@z) →* cn[1])∧(an[4] →* an[1]))
(3) -> (1), if ((i[3] →* i[1])∧(+@z(j[3], 1@z) →* j[1])∧(bn[3] →* bn[1])∧(+@z(cn[3], 1@z) →* cn[1])∧(an[3] →* an[1]))
eval(x0, x1, x2, x3, x4)
Cond_eval(TRUE, x0, x1, x2, x3, x4)
Cond_eval2(TRUE, x0, x1, x2, x3, x4)
Cond_eval3(TRUE, x0, x1, x2, x3, x4)
Cond_eval1(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
z
(4) -> (2), if ((+@z(i[4], 1@z) →* i[2])∧(j[4] →* j[2])∧(bn[4] →* bn[2])∧(+@z(cn[4], 1@z) →* cn[2])∧(an[4] →* an[2]))
(0) -> (2), if ((+@z(i[0], 1@z) →* i[2])∧(j[0] →* j[2])∧(bn[0] →* bn[2])∧(+@z(cn[0], 1@z) →* cn[2])∧(an[0] →* an[2]))
(4) -> (6), if ((+@z(i[4], 1@z) →* i[6])∧(j[4] →* j[6])∧(bn[4] →* bn[6])∧(+@z(cn[4], 1@z) →* cn[6])∧(an[4] →* an[6]))
(2) -> (4), if ((cn[2] →* cn[4])∧(i[2] →* i[4])∧(an[2] →* an[4])∧(bn[2] →* bn[4])∧(j[2] →* j[4])∧(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])) →* TRUE))
(6) -> (0), if ((cn[6] →* cn[0])∧(i[6] →* i[0])∧(an[6] →* an[0])∧(bn[6] →* bn[0])∧(j[6] →* j[0])∧(&&(<@z(j[6], bn[6]), <@z(i[6], an[6])) →* TRUE))
(3) -> (2), if ((i[3] →* i[2])∧(+@z(j[3], 1@z) →* j[2])∧(bn[3] →* bn[2])∧(+@z(cn[3], 1@z) →* cn[2])∧(an[3] →* an[2]))
(4) -> (7), if ((+@z(i[4], 1@z) →* i[7])∧(j[4] →* j[7])∧(bn[4] →* bn[7])∧(+@z(cn[4], 1@z) →* cn[7])∧(an[4] →* an[7]))
(3) -> (7), if ((i[3] →* i[7])∧(+@z(j[3], 1@z) →* j[7])∧(bn[3] →* bn[7])∧(+@z(cn[3], 1@z) →* cn[7])∧(an[3] →* an[7]))
(3) -> (6), if ((i[3] →* i[6])∧(+@z(j[3], 1@z) →* j[6])∧(bn[3] →* bn[6])∧(+@z(cn[3], 1@z) →* cn[6])∧(an[3] →* an[6]))
(0) -> (6), if ((+@z(i[0], 1@z) →* i[6])∧(j[0] →* j[6])∧(bn[0] →* bn[6])∧(+@z(cn[0], 1@z) →* cn[6])∧(an[0] →* an[6]))
(7) -> (3), if ((cn[7] →* cn[3])∧(i[7] →* i[3])∧(an[7] →* an[3])∧(bn[7] →* bn[3])∧(j[7] →* j[3])∧(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])) →* TRUE))
(0) -> (7), if ((+@z(i[0], 1@z) →* i[7])∧(j[0] →* j[7])∧(bn[0] →* bn[7])∧(+@z(cn[0], 1@z) →* cn[7])∧(an[0] →* an[7]))
eval(x0, x1, x2, x3, x4)
Cond_eval(TRUE, x0, x1, x2, x3, x4)
Cond_eval2(TRUE, x0, x1, x2, x3, x4)
Cond_eval3(TRUE, x0, x1, x2, x3, x4)
Cond_eval1(TRUE, x0, x1, x2, x3, x4)
(1) (+@z(cn[4], 1@z)=cn[7]∧an[4]=an[7]∧&&(>=@z(j[2], bn[2]), <@z(i[2], an[2]))=TRUE∧an[2]=an[4]∧i[2]=i[4]∧bn[2]=bn[4]∧+@z(i[4], 1@z)=i[7]∧bn[4]=bn[7]∧cn[2]=cn[4]∧j[2]=j[4]∧j[4]=j[7] ⇒ COND_EVAL1(TRUE, an[4], bn[4], cn[4], i[4], j[4])≥NonInfC∧COND_EVAL1(TRUE, an[4], bn[4], cn[4], i[4], j[4])≥EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(2) (>=@z(j[2], bn[2])=TRUE∧<@z(i[2], an[2])=TRUE ⇒ COND_EVAL1(TRUE, an[2], bn[2], cn[2], i[2], j[2])≥NonInfC∧COND_EVAL1(TRUE, an[2], bn[2], cn[2], i[2], j[2])≥EVAL(an[2], bn[2], +@z(cn[2], 1@z), +@z(i[2], 1@z), j[2])∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(3) (j[2] + (-1)bn[2] ≥ 0∧-1 + an[2] + (-1)i[2] ≥ 0 ⇒ (UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (j[2] + (-1)bn[2] ≥ 0∧-1 + an[2] + (-1)i[2] ≥ 0 ⇒ (UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(5) (j[2] + (-1)bn[2] ≥ 0∧-1 + an[2] + (-1)i[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(6) (j[2] + (-1)bn[2] ≥ 0∧-1 + an[2] + (-1)i[2] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 = 0)
(7) (bn[2] ≥ 0∧-1 + an[2] + (-1)i[2] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 = 0)
(8) (bn[2] ≥ 0∧an[2] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 = 0)
(9) (bn[2] ≥ 0∧an[2] ≥ 0∧i[2] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 = 0)
(10) (bn[2] ≥ 0∧an[2] ≥ 0∧i[2] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 = 0)
(11) (bn[2] ≥ 0∧an[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 = 0)
(12) (bn[2] ≥ 0∧an[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 = 0)
(13) (bn[2] ≥ 0∧an[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 = 0)
(14) (bn[2] ≥ 0∧an[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 = 0)
(15) (an[4]=an[6]∧j[4]=j[6]∧&&(>=@z(j[2], bn[2]), <@z(i[2], an[2]))=TRUE∧an[2]=an[4]∧i[2]=i[4]∧+@z(cn[4], 1@z)=cn[6]∧bn[2]=bn[4]∧cn[2]=cn[4]∧+@z(i[4], 1@z)=i[6]∧j[2]=j[4]∧bn[4]=bn[6] ⇒ COND_EVAL1(TRUE, an[4], bn[4], cn[4], i[4], j[4])≥NonInfC∧COND_EVAL1(TRUE, an[4], bn[4], cn[4], i[4], j[4])≥EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(16) (>=@z(j[2], bn[2])=TRUE∧<@z(i[2], an[2])=TRUE ⇒ COND_EVAL1(TRUE, an[2], bn[2], cn[2], i[2], j[2])≥NonInfC∧COND_EVAL1(TRUE, an[2], bn[2], cn[2], i[2], j[2])≥EVAL(an[2], bn[2], +@z(cn[2], 1@z), +@z(i[2], 1@z), j[2])∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(17) (j[2] + (-1)bn[2] ≥ 0∧-1 + an[2] + (-1)i[2] ≥ 0 ⇒ (UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(18) (j[2] + (-1)bn[2] ≥ 0∧-1 + an[2] + (-1)i[2] ≥ 0 ⇒ (UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(19) (j[2] + (-1)bn[2] ≥ 0∧-1 + an[2] + (-1)i[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(20) (j[2] + (-1)bn[2] ≥ 0∧-1 + an[2] + (-1)i[2] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(21) (bn[2] ≥ 0∧-1 + an[2] + (-1)i[2] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(22) (bn[2] ≥ 0∧an[2] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(23) (bn[2] ≥ 0∧an[2] ≥ 0∧i[2] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(24) (bn[2] ≥ 0∧an[2] ≥ 0∧i[2] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(25) (bn[2] ≥ 0∧an[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(26) (bn[2] ≥ 0∧an[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(27) (bn[2] ≥ 0∧an[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(28) (bn[2] ≥ 0∧an[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(29) (an[4]=an[2]1∧+@z(cn[4], 1@z)=cn[2]1∧&&(>=@z(j[2], bn[2]), <@z(i[2], an[2]))=TRUE∧an[2]=an[4]∧i[2]=i[4]∧bn[4]=bn[2]1∧bn[2]=bn[4]∧cn[2]=cn[4]∧+@z(i[4], 1@z)=i[2]1∧j[2]=j[4]∧j[4]=j[2]1 ⇒ COND_EVAL1(TRUE, an[4], bn[4], cn[4], i[4], j[4])≥NonInfC∧COND_EVAL1(TRUE, an[4], bn[4], cn[4], i[4], j[4])≥EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(30) (>=@z(j[2], bn[2])=TRUE∧<@z(i[2], an[2])=TRUE ⇒ COND_EVAL1(TRUE, an[2], bn[2], cn[2], i[2], j[2])≥NonInfC∧COND_EVAL1(TRUE, an[2], bn[2], cn[2], i[2], j[2])≥EVAL(an[2], bn[2], +@z(cn[2], 1@z), +@z(i[2], 1@z), j[2])∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(31) (j[2] + (-1)bn[2] ≥ 0∧-1 + an[2] + (-1)i[2] ≥ 0 ⇒ (UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(32) (j[2] + (-1)bn[2] ≥ 0∧-1 + an[2] + (-1)i[2] ≥ 0 ⇒ (UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(33) (-1 + an[2] + (-1)i[2] ≥ 0∧j[2] + (-1)bn[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(34) (-1 + an[2] + (-1)i[2] ≥ 0∧j[2] + (-1)bn[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 = 0)
(35) (-1 + an[2] + (-1)i[2] ≥ 0∧bn[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 = 0)
(36) (an[2] ≥ 0∧bn[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 = 0)
(37) (an[2] ≥ 0∧bn[2] ≥ 0∧i[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 = 0)
(38) (an[2] ≥ 0∧bn[2] ≥ 0∧i[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 = 0)
(39) (an[2] ≥ 0∧bn[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 = 0)
(40) (an[2] ≥ 0∧bn[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 = 0)
(41) (an[2] ≥ 0∧bn[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 = 0)
(42) (an[2] ≥ 0∧bn[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 = 0)
(43) (EVAL(an[2], bn[2], cn[2], i[2], j[2])≥NonInfC∧EVAL(an[2], bn[2], cn[2], i[2], j[2])≥COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])∧(UIncreasing(COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])), ≥))
(44) ((UIncreasing(COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(45) ((UIncreasing(COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(46) (0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])), ≥)∧0 ≥ 0)
(47) (0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0)
(48) (i[7]=i[3]∧bn[7]=bn[3]∧cn[7]=cn[3]∧i[3]=i[2]∧bn[3]=bn[2]∧an[3]=an[2]∧an[7]=an[3]∧+@z(j[3], 1@z)=j[2]∧j[7]=j[3]∧+@z(cn[3], 1@z)=cn[2]∧&&(<@z(j[7], bn[7]), >=@z(i[7], an[7]))=TRUE ⇒ COND_EVAL3(TRUE, an[3], bn[3], cn[3], i[3], j[3])≥NonInfC∧COND_EVAL3(TRUE, an[3], bn[3], cn[3], i[3], j[3])≥EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥))
(49) (<@z(j[7], bn[7])=TRUE∧>=@z(i[7], an[7])=TRUE ⇒ COND_EVAL3(TRUE, an[7], bn[7], cn[7], i[7], j[7])≥NonInfC∧COND_EVAL3(TRUE, an[7], bn[7], cn[7], i[7], j[7])≥EVAL(an[7], bn[7], +@z(cn[7], 1@z), i[7], +@z(j[7], 1@z))∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥))
(50) (-1 + bn[7] + (-1)j[7] ≥ 0∧i[7] + (-1)an[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(51) (-1 + bn[7] + (-1)j[7] ≥ 0∧i[7] + (-1)an[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(52) (-1 + bn[7] + (-1)j[7] ≥ 0∧i[7] + (-1)an[7] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 ≥ 0)
(53) (-1 + bn[7] + (-1)j[7] ≥ 0∧i[7] + (-1)an[7] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 ≥ 0∧0 = 0∧0 = 0)
(54) (-1 + bn[7] + (-1)j[7] ≥ 0∧an[7] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 ≥ 0∧0 = 0∧0 = 0)
(55) (j[7] ≥ 0∧an[7] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 ≥ 0∧0 = 0∧0 = 0)
(56) (j[7] ≥ 0∧an[7] ≥ 0∧i[7] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 ≥ 0∧0 = 0∧0 = 0)
(57) (j[7] ≥ 0∧an[7] ≥ 0∧i[7] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 ≥ 0∧0 = 0∧0 = 0)
(58) (j[7] ≥ 0∧an[7] ≥ 0∧i[7] ≥ 0∧bn[7] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 ≥ 0∧0 = 0∧0 = 0)
(59) (j[7] ≥ 0∧an[7] ≥ 0∧i[7] ≥ 0∧bn[7] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 ≥ 0∧0 = 0∧0 = 0)
(60) (j[7] ≥ 0∧an[7] ≥ 0∧i[7] ≥ 0∧bn[7] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 ≥ 0∧0 = 0∧0 = 0)
(61) (j[7] ≥ 0∧an[7] ≥ 0∧i[7] ≥ 0∧bn[7] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 ≥ 0∧0 = 0∧0 = 0)
(62) (an[3]=an[7]1∧i[7]=i[3]∧bn[3]=bn[7]1∧+@z(cn[3], 1@z)=cn[7]1∧bn[7]=bn[3]∧cn[7]=cn[3]∧+@z(j[3], 1@z)=j[7]1∧i[3]=i[7]1∧an[7]=an[3]∧j[7]=j[3]∧&&(<@z(j[7], bn[7]), >=@z(i[7], an[7]))=TRUE ⇒ COND_EVAL3(TRUE, an[3], bn[3], cn[3], i[3], j[3])≥NonInfC∧COND_EVAL3(TRUE, an[3], bn[3], cn[3], i[3], j[3])≥EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥))
(63) (<@z(j[7], bn[7])=TRUE∧>=@z(i[7], an[7])=TRUE ⇒ COND_EVAL3(TRUE, an[7], bn[7], cn[7], i[7], j[7])≥NonInfC∧COND_EVAL3(TRUE, an[7], bn[7], cn[7], i[7], j[7])≥EVAL(an[7], bn[7], +@z(cn[7], 1@z), i[7], +@z(j[7], 1@z))∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥))
(64) (-1 + bn[7] + (-1)j[7] ≥ 0∧i[7] + (-1)an[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(65) (-1 + bn[7] + (-1)j[7] ≥ 0∧i[7] + (-1)an[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(66) (i[7] + (-1)an[7] ≥ 0∧-1 + bn[7] + (-1)j[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(67) (i[7] + (-1)an[7] ≥ 0∧-1 + bn[7] + (-1)j[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0)
(68) (an[7] ≥ 0∧-1 + bn[7] + (-1)j[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0)
(69) (an[7] ≥ 0∧j[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0)
(70) (an[7] ≥ 0∧j[7] ≥ 0∧bn[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0)
(71) (an[7] ≥ 0∧j[7] ≥ 0∧bn[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0)
(72) (an[7] ≥ 0∧j[7] ≥ 0∧bn[7] ≥ 0∧i[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0)
(73) (an[7] ≥ 0∧j[7] ≥ 0∧bn[7] ≥ 0∧i[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0)
(74) (an[7] ≥ 0∧j[7] ≥ 0∧bn[7] ≥ 0∧i[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0)
(75) (an[7] ≥ 0∧j[7] ≥ 0∧bn[7] ≥ 0∧i[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0)
(76) (bn[3]=bn[6]∧i[7]=i[3]∧bn[7]=bn[3]∧cn[7]=cn[3]∧+@z(cn[3], 1@z)=cn[6]∧an[3]=an[6]∧i[3]=i[6]∧an[7]=an[3]∧j[7]=j[3]∧&&(<@z(j[7], bn[7]), >=@z(i[7], an[7]))=TRUE∧+@z(j[3], 1@z)=j[6] ⇒ COND_EVAL3(TRUE, an[3], bn[3], cn[3], i[3], j[3])≥NonInfC∧COND_EVAL3(TRUE, an[3], bn[3], cn[3], i[3], j[3])≥EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥))
(77) (<@z(j[7], bn[7])=TRUE∧>=@z(i[7], an[7])=TRUE ⇒ COND_EVAL3(TRUE, an[7], bn[7], cn[7], i[7], j[7])≥NonInfC∧COND_EVAL3(TRUE, an[7], bn[7], cn[7], i[7], j[7])≥EVAL(an[7], bn[7], +@z(cn[7], 1@z), i[7], +@z(j[7], 1@z))∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥))
(78) (-1 + bn[7] + (-1)j[7] ≥ 0∧i[7] + (-1)an[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(79) (-1 + bn[7] + (-1)j[7] ≥ 0∧i[7] + (-1)an[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(80) (-1 + bn[7] + (-1)j[7] ≥ 0∧i[7] + (-1)an[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(81) (-1 + bn[7] + (-1)j[7] ≥ 0∧i[7] + (-1)an[7] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 = 0∧0 = 0∧0 ≥ 0)
(82) (-1 + bn[7] + (-1)j[7] ≥ 0∧an[7] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 = 0∧0 = 0∧0 ≥ 0)
(83) (j[7] ≥ 0∧an[7] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 = 0∧0 = 0∧0 ≥ 0)
(84) (j[7] ≥ 0∧an[7] ≥ 0∧i[7] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 = 0∧0 = 0∧0 ≥ 0)
(85) (j[7] ≥ 0∧an[7] ≥ 0∧i[7] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 = 0∧0 = 0∧0 ≥ 0)
(86) (j[7] ≥ 0∧an[7] ≥ 0∧i[7] ≥ 0∧bn[7] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 = 0∧0 = 0∧0 ≥ 0)
(87) (j[7] ≥ 0∧an[7] ≥ 0∧i[7] ≥ 0∧bn[7] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 = 0∧0 = 0∧0 ≥ 0)
(88) (j[7] ≥ 0∧an[7] ≥ 0∧i[7] ≥ 0∧bn[7] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 = 0∧0 = 0∧0 ≥ 0)
(89) (j[7] ≥ 0∧an[7] ≥ 0∧i[7] ≥ 0∧bn[7] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 = 0∧0 = 0∧0 ≥ 0)
(90) (EVAL(an[7], bn[7], cn[7], i[7], j[7])≥NonInfC∧EVAL(an[7], bn[7], cn[7], i[7], j[7])≥COND_EVAL3(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])), an[7], bn[7], cn[7], i[7], j[7])∧(UIncreasing(COND_EVAL3(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])), an[7], bn[7], cn[7], i[7], j[7])), ≥))
(91) ((UIncreasing(COND_EVAL3(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])), an[7], bn[7], cn[7], i[7], j[7])), ≥)∧0 ≥ 0∧1 ≥ 0)
(92) ((UIncreasing(COND_EVAL3(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])), an[7], bn[7], cn[7], i[7], j[7])), ≥)∧0 ≥ 0∧1 ≥ 0)
(93) (0 ≥ 0∧(UIncreasing(COND_EVAL3(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])), an[7], bn[7], cn[7], i[7], j[7])), ≥)∧1 ≥ 0)
(94) (0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(COND_EVAL3(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])), an[7], bn[7], cn[7], i[7], j[7])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧1 ≥ 0)
(95) (+@z(cn[0], 1@z)=cn[7]∧&&(<@z(j[6], bn[6]), <@z(i[6], an[6]))=TRUE∧an[0]=an[7]∧j[6]=j[0]∧cn[6]=cn[0]∧+@z(i[0], 1@z)=i[7]∧an[6]=an[0]∧bn[6]=bn[0]∧i[6]=i[0]∧bn[0]=bn[7]∧j[0]=j[7] ⇒ COND_EVAL(TRUE, an[0], bn[0], cn[0], i[0], j[0])≥NonInfC∧COND_EVAL(TRUE, an[0], bn[0], cn[0], i[0], j[0])≥EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥))
(96) (<@z(j[6], bn[6])=TRUE∧<@z(i[6], an[6])=TRUE ⇒ COND_EVAL(TRUE, an[6], bn[6], cn[6], i[6], j[6])≥NonInfC∧COND_EVAL(TRUE, an[6], bn[6], cn[6], i[6], j[6])≥EVAL(an[6], bn[6], +@z(cn[6], 1@z), +@z(i[6], 1@z), j[6])∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥))
(97) (bn[6] + -1 + (-1)j[6] ≥ 0∧-1 + an[6] + (-1)i[6] ≥ 0 ⇒ (UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧-1 + (-1)Bound + (-1)j[6] + (-1)i[6] + bn[6] + an[6] ≥ 0∧0 ≥ 0)
(98) (bn[6] + -1 + (-1)j[6] ≥ 0∧-1 + an[6] + (-1)i[6] ≥ 0 ⇒ (UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧-1 + (-1)Bound + (-1)j[6] + (-1)i[6] + bn[6] + an[6] ≥ 0∧0 ≥ 0)
(99) (-1 + an[6] + (-1)i[6] ≥ 0∧bn[6] + -1 + (-1)j[6] ≥ 0 ⇒ (UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧-1 + (-1)Bound + (-1)j[6] + (-1)i[6] + bn[6] + an[6] ≥ 0∧0 ≥ 0)
(100) (-1 + an[6] + (-1)i[6] ≥ 0∧bn[6] + -1 + (-1)j[6] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 = 0∧-1 + (-1)Bound + (-1)j[6] + (-1)i[6] + bn[6] + an[6] ≥ 0∧0 ≥ 0)
(101) (-1 + an[6] + (-1)i[6] ≥ 0∧bn[6] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 = 0∧(-1)Bound + (-1)i[6] + bn[6] + an[6] ≥ 0∧0 ≥ 0)
(102) (i[6] ≥ 0∧bn[6] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 = 0∧1 + (-1)Bound + i[6] + bn[6] ≥ 0∧0 ≥ 0)
(103) (i[6] ≥ 0∧bn[6] ≥ 0∧j[6] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 = 0∧1 + (-1)Bound + i[6] + bn[6] ≥ 0∧0 ≥ 0)
(104) (i[6] ≥ 0∧bn[6] ≥ 0∧j[6] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 = 0∧1 + (-1)Bound + i[6] + bn[6] ≥ 0∧0 ≥ 0)
(105) (i[6] ≥ 0∧bn[6] ≥ 0∧j[6] ≥ 0∧an[6] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 = 0∧1 + (-1)Bound + i[6] + bn[6] ≥ 0∧0 ≥ 0)
(106) (i[6] ≥ 0∧bn[6] ≥ 0∧j[6] ≥ 0∧an[6] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 = 0∧1 + (-1)Bound + i[6] + bn[6] ≥ 0∧0 ≥ 0)
(107) (i[6] ≥ 0∧bn[6] ≥ 0∧j[6] ≥ 0∧an[6] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 = 0∧1 + (-1)Bound + i[6] + bn[6] ≥ 0∧0 ≥ 0)
(108) (i[6] ≥ 0∧bn[6] ≥ 0∧j[6] ≥ 0∧an[6] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 = 0∧1 + (-1)Bound + i[6] + bn[6] ≥ 0∧0 ≥ 0)
(109) (&&(<@z(j[6], bn[6]), <@z(i[6], an[6]))=TRUE∧j[6]=j[0]∧cn[6]=cn[0]∧bn[0]=bn[2]∧j[0]=j[2]∧an[6]=an[0]∧bn[6]=bn[0]∧i[6]=i[0]∧+@z(i[0], 1@z)=i[2]∧an[0]=an[2]∧+@z(cn[0], 1@z)=cn[2] ⇒ COND_EVAL(TRUE, an[0], bn[0], cn[0], i[0], j[0])≥NonInfC∧COND_EVAL(TRUE, an[0], bn[0], cn[0], i[0], j[0])≥EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥))
(110) (<@z(j[6], bn[6])=TRUE∧<@z(i[6], an[6])=TRUE ⇒ COND_EVAL(TRUE, an[6], bn[6], cn[6], i[6], j[6])≥NonInfC∧COND_EVAL(TRUE, an[6], bn[6], cn[6], i[6], j[6])≥EVAL(an[6], bn[6], +@z(cn[6], 1@z), +@z(i[6], 1@z), j[6])∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥))
(111) (bn[6] + -1 + (-1)j[6] ≥ 0∧-1 + an[6] + (-1)i[6] ≥ 0 ⇒ (UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧-1 + (-1)Bound + (-1)j[6] + (-1)i[6] + bn[6] + an[6] ≥ 0∧0 ≥ 0)
(112) (bn[6] + -1 + (-1)j[6] ≥ 0∧-1 + an[6] + (-1)i[6] ≥ 0 ⇒ (UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧-1 + (-1)Bound + (-1)j[6] + (-1)i[6] + bn[6] + an[6] ≥ 0∧0 ≥ 0)
(113) (-1 + an[6] + (-1)i[6] ≥ 0∧bn[6] + -1 + (-1)j[6] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧-1 + (-1)Bound + (-1)j[6] + (-1)i[6] + bn[6] + an[6] ≥ 0)
(114) (-1 + an[6] + (-1)i[6] ≥ 0∧bn[6] + -1 + (-1)j[6] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 = 0∧0 = 0∧-1 + (-1)Bound + (-1)j[6] + (-1)i[6] + bn[6] + an[6] ≥ 0)
(115) (-1 + an[6] + (-1)i[6] ≥ 0∧bn[6] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 = 0∧0 = 0∧(-1)Bound + (-1)i[6] + bn[6] + an[6] ≥ 0)
(116) (i[6] ≥ 0∧bn[6] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 = 0∧0 = 0∧1 + (-1)Bound + i[6] + bn[6] ≥ 0)
(117) (i[6] ≥ 0∧bn[6] ≥ 0∧j[6] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 = 0∧0 = 0∧1 + (-1)Bound + i[6] + bn[6] ≥ 0)
(118) (i[6] ≥ 0∧bn[6] ≥ 0∧j[6] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 = 0∧0 = 0∧1 + (-1)Bound + i[6] + bn[6] ≥ 0)
(119) (i[6] ≥ 0∧bn[6] ≥ 0∧j[6] ≥ 0∧an[6] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 = 0∧0 = 0∧1 + (-1)Bound + i[6] + bn[6] ≥ 0)
(120) (i[6] ≥ 0∧bn[6] ≥ 0∧j[6] ≥ 0∧an[6] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 = 0∧0 = 0∧1 + (-1)Bound + i[6] + bn[6] ≥ 0)
(121) (i[6] ≥ 0∧bn[6] ≥ 0∧j[6] ≥ 0∧an[6] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 = 0∧0 = 0∧1 + (-1)Bound + i[6] + bn[6] ≥ 0)
(122) (i[6] ≥ 0∧bn[6] ≥ 0∧j[6] ≥ 0∧an[6] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 = 0∧0 = 0∧1 + (-1)Bound + i[6] + bn[6] ≥ 0)
(123) (an[0]=an[6]1∧&&(<@z(j[6], bn[6]), <@z(i[6], an[6]))=TRUE∧+@z(i[0], 1@z)=i[6]1∧j[6]=j[0]∧bn[0]=bn[6]1∧cn[6]=cn[0]∧+@z(cn[0], 1@z)=cn[6]1∧an[6]=an[0]∧bn[6]=bn[0]∧i[6]=i[0]∧j[0]=j[6]1 ⇒ COND_EVAL(TRUE, an[0], bn[0], cn[0], i[0], j[0])≥NonInfC∧COND_EVAL(TRUE, an[0], bn[0], cn[0], i[0], j[0])≥EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥))
(124) (<@z(j[6], bn[6])=TRUE∧<@z(i[6], an[6])=TRUE ⇒ COND_EVAL(TRUE, an[6], bn[6], cn[6], i[6], j[6])≥NonInfC∧COND_EVAL(TRUE, an[6], bn[6], cn[6], i[6], j[6])≥EVAL(an[6], bn[6], +@z(cn[6], 1@z), +@z(i[6], 1@z), j[6])∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥))
(125) (bn[6] + -1 + (-1)j[6] ≥ 0∧-1 + an[6] + (-1)i[6] ≥ 0 ⇒ (UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧-1 + (-1)Bound + (-1)j[6] + (-1)i[6] + bn[6] + an[6] ≥ 0∧0 ≥ 0)
(126) (bn[6] + -1 + (-1)j[6] ≥ 0∧-1 + an[6] + (-1)i[6] ≥ 0 ⇒ (UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧-1 + (-1)Bound + (-1)j[6] + (-1)i[6] + bn[6] + an[6] ≥ 0∧0 ≥ 0)
(127) (bn[6] + -1 + (-1)j[6] ≥ 0∧-1 + an[6] + (-1)i[6] ≥ 0 ⇒ -1 + (-1)Bound + (-1)j[6] + (-1)i[6] + bn[6] + an[6] ≥ 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 ≥ 0)
(128) (bn[6] + -1 + (-1)j[6] ≥ 0∧-1 + an[6] + (-1)i[6] ≥ 0 ⇒ -1 + (-1)Bound + (-1)j[6] + (-1)i[6] + bn[6] + an[6] ≥ 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0)
(129) (bn[6] ≥ 0∧-1 + an[6] + (-1)i[6] ≥ 0 ⇒ (-1)Bound + (-1)i[6] + bn[6] + an[6] ≥ 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0)
(130) (bn[6] ≥ 0∧i[6] ≥ 0 ⇒ 1 + (-1)Bound + i[6] + bn[6] ≥ 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0)
(131) (bn[6] ≥ 0∧i[6] ≥ 0∧j[6] ≥ 0 ⇒ 1 + (-1)Bound + i[6] + bn[6] ≥ 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0)
(132) (bn[6] ≥ 0∧i[6] ≥ 0∧j[6] ≥ 0 ⇒ 1 + (-1)Bound + i[6] + bn[6] ≥ 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0)
(133) (bn[6] ≥ 0∧i[6] ≥ 0∧j[6] ≥ 0∧an[6] ≥ 0 ⇒ 1 + (-1)Bound + i[6] + bn[6] ≥ 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0)
(134) (bn[6] ≥ 0∧i[6] ≥ 0∧j[6] ≥ 0∧an[6] ≥ 0 ⇒ 1 + (-1)Bound + i[6] + bn[6] ≥ 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0)
(135) (bn[6] ≥ 0∧i[6] ≥ 0∧j[6] ≥ 0∧an[6] ≥ 0 ⇒ 1 + (-1)Bound + i[6] + bn[6] ≥ 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0)
(136) (bn[6] ≥ 0∧i[6] ≥ 0∧j[6] ≥ 0∧an[6] ≥ 0 ⇒ 1 + (-1)Bound + i[6] + bn[6] ≥ 0∧(UIncreasing(EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0)
(137) (EVAL(an[6], bn[6], cn[6], i[6], j[6])≥NonInfC∧EVAL(an[6], bn[6], cn[6], i[6], j[6])≥COND_EVAL(&&(<@z(j[6], bn[6]), <@z(i[6], an[6])), an[6], bn[6], cn[6], i[6], j[6])∧(UIncreasing(COND_EVAL(&&(<@z(j[6], bn[6]), <@z(i[6], an[6])), an[6], bn[6], cn[6], i[6], j[6])), ≥))
(138) ((UIncreasing(COND_EVAL(&&(<@z(j[6], bn[6]), <@z(i[6], an[6])), an[6], bn[6], cn[6], i[6], j[6])), ≥)∧0 ≥ 0∧0 ≥ 0)
(139) ((UIncreasing(COND_EVAL(&&(<@z(j[6], bn[6]), <@z(i[6], an[6])), an[6], bn[6], cn[6], i[6], j[6])), ≥)∧0 ≥ 0∧0 ≥ 0)
(140) (0 ≥ 0∧(UIncreasing(COND_EVAL(&&(<@z(j[6], bn[6]), <@z(i[6], an[6])), an[6], bn[6], cn[6], i[6], j[6])), ≥)∧0 ≥ 0)
(141) (0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL(&&(<@z(j[6], bn[6]), <@z(i[6], an[6])), an[6], bn[6], cn[6], i[6], j[6])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
POL(COND_EVAL3(x1, x2, x3, x4, x5, x6)) = -1 + (-1)x6 + (-1)x5 + x3 + x2
POL(>=@z(x1, x2)) = -1
POL(COND_EVAL1(x1, x2, x3, x4, x5, x6)) = -1 + (-1)x6 + (-1)x5 + x3 + x2 + (-1)x1
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = -1
POL(<@z(x1, x2)) = -1
POL(COND_EVAL(x1, x2, x3, x4, x5, x6)) = 1 + (-1)x6 + (-1)x5 + x3 + x2 + (2)x1
POL(EVAL(x1, x2, x3, x4, x5)) = (-1)x5 + (-1)x4 + x2 + x1
POL(1@z) = 1
POL(undefined) = -1
COND_EVAL1(TRUE, an[4], bn[4], cn[4], i[4], j[4]) → EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])
EVAL(an[6], bn[6], cn[6], i[6], j[6]) → COND_EVAL(&&(<@z(j[6], bn[6]), <@z(i[6], an[6])), an[6], bn[6], cn[6], i[6], j[6])
COND_EVAL(TRUE, an[0], bn[0], cn[0], i[0], j[0]) → EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])
EVAL(an[2], bn[2], cn[2], i[2], j[2]) → COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])
COND_EVAL3(TRUE, an[3], bn[3], cn[3], i[3], j[3]) → EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))
EVAL(an[7], bn[7], cn[7], i[7], j[7]) → COND_EVAL3(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])), an[7], bn[7], cn[7], i[7], j[7])
COND_EVAL(TRUE, an[0], bn[0], cn[0], i[0], j[0]) → EVAL(an[0], bn[0], +@z(cn[0], 1@z), +@z(i[0], 1@z), j[0])
&&(FALSE, FALSE)1 ↔ FALSE1
&&(TRUE, TRUE)1 ↔ TRUE1
+@z1 ↔
&&(FALSE, TRUE)1 ↔ FALSE1
&&(TRUE, FALSE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
(4) -> (2), if ((+@z(i[4], 1@z) →* i[2])∧(j[4] →* j[2])∧(bn[4] →* bn[2])∧(+@z(cn[4], 1@z) →* cn[2])∧(an[4] →* an[2]))
(4) -> (6), if ((+@z(i[4], 1@z) →* i[6])∧(j[4] →* j[6])∧(bn[4] →* bn[6])∧(+@z(cn[4], 1@z) →* cn[6])∧(an[4] →* an[6]))
(2) -> (4), if ((cn[2] →* cn[4])∧(i[2] →* i[4])∧(an[2] →* an[4])∧(bn[2] →* bn[4])∧(j[2] →* j[4])∧(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])) →* TRUE))
(3) -> (2), if ((i[3] →* i[2])∧(+@z(j[3], 1@z) →* j[2])∧(bn[3] →* bn[2])∧(+@z(cn[3], 1@z) →* cn[2])∧(an[3] →* an[2]))
(4) -> (7), if ((+@z(i[4], 1@z) →* i[7])∧(j[4] →* j[7])∧(bn[4] →* bn[7])∧(+@z(cn[4], 1@z) →* cn[7])∧(an[4] →* an[7]))
(3) -> (7), if ((i[3] →* i[7])∧(+@z(j[3], 1@z) →* j[7])∧(bn[3] →* bn[7])∧(+@z(cn[3], 1@z) →* cn[7])∧(an[3] →* an[7]))
(3) -> (6), if ((i[3] →* i[6])∧(+@z(j[3], 1@z) →* j[6])∧(bn[3] →* bn[6])∧(+@z(cn[3], 1@z) →* cn[6])∧(an[3] →* an[6]))
(7) -> (3), if ((cn[7] →* cn[3])∧(i[7] →* i[3])∧(an[7] →* an[3])∧(bn[7] →* bn[3])∧(j[7] →* j[3])∧(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])) →* TRUE))
eval(x0, x1, x2, x3, x4)
Cond_eval(TRUE, x0, x1, x2, x3, x4)
Cond_eval2(TRUE, x0, x1, x2, x3, x4)
Cond_eval3(TRUE, x0, x1, x2, x3, x4)
Cond_eval1(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
z
(4) -> (2), if ((+@z(i[4], 1@z) →* i[2])∧(j[4] →* j[2])∧(bn[4] →* bn[2])∧(+@z(cn[4], 1@z) →* cn[2])∧(an[4] →* an[2]))
(2) -> (4), if ((cn[2] →* cn[4])∧(i[2] →* i[4])∧(an[2] →* an[4])∧(bn[2] →* bn[4])∧(j[2] →* j[4])∧(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])) →* TRUE))
(3) -> (2), if ((i[3] →* i[2])∧(+@z(j[3], 1@z) →* j[2])∧(bn[3] →* bn[2])∧(+@z(cn[3], 1@z) →* cn[2])∧(an[3] →* an[2]))
(4) -> (7), if ((+@z(i[4], 1@z) →* i[7])∧(j[4] →* j[7])∧(bn[4] →* bn[7])∧(+@z(cn[4], 1@z) →* cn[7])∧(an[4] →* an[7]))
(3) -> (7), if ((i[3] →* i[7])∧(+@z(j[3], 1@z) →* j[7])∧(bn[3] →* bn[7])∧(+@z(cn[3], 1@z) →* cn[7])∧(an[3] →* an[7]))
(7) -> (3), if ((cn[7] →* cn[3])∧(i[7] →* i[3])∧(an[7] →* an[3])∧(bn[7] →* bn[3])∧(j[7] →* j[3])∧(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])) →* TRUE))
eval(x0, x1, x2, x3, x4)
Cond_eval(TRUE, x0, x1, x2, x3, x4)
Cond_eval2(TRUE, x0, x1, x2, x3, x4)
Cond_eval3(TRUE, x0, x1, x2, x3, x4)
Cond_eval1(TRUE, x0, x1, x2, x3, x4)
(1) (+@z(cn[4], 1@z)=cn[7]∧an[4]=an[7]∧&&(>=@z(j[2], bn[2]), <@z(i[2], an[2]))=TRUE∧an[2]=an[4]∧i[2]=i[4]∧bn[2]=bn[4]∧+@z(i[4], 1@z)=i[7]∧bn[4]=bn[7]∧cn[2]=cn[4]∧j[2]=j[4]∧j[4]=j[7] ⇒ COND_EVAL1(TRUE, an[4], bn[4], cn[4], i[4], j[4])≥NonInfC∧COND_EVAL1(TRUE, an[4], bn[4], cn[4], i[4], j[4])≥EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(2) (>=@z(j[2], bn[2])=TRUE∧<@z(i[2], an[2])=TRUE ⇒ COND_EVAL1(TRUE, an[2], bn[2], cn[2], i[2], j[2])≥NonInfC∧COND_EVAL1(TRUE, an[2], bn[2], cn[2], i[2], j[2])≥EVAL(an[2], bn[2], +@z(cn[2], 1@z), +@z(i[2], 1@z), j[2])∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(3) (j[2] + (-1)bn[2] ≥ 0∧-1 + an[2] + (-1)i[2] ≥ 0 ⇒ (UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (j[2] + (-1)bn[2] ≥ 0∧-1 + an[2] + (-1)i[2] ≥ 0 ⇒ (UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(5) (-1 + an[2] + (-1)i[2] ≥ 0∧j[2] + (-1)bn[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 ≥ 0)
(6) (-1 + an[2] + (-1)i[2] ≥ 0∧j[2] + (-1)bn[2] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 = 0)
(7) (-1 + an[2] + (-1)i[2] ≥ 0∧bn[2] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 = 0)
(8) (an[2] ≥ 0∧bn[2] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 = 0)
(9) (an[2] ≥ 0∧bn[2] ≥ 0∧i[2] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 = 0)
(10) (an[2] ≥ 0∧bn[2] ≥ 0∧i[2] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 = 0)
(11) (an[2] ≥ 0∧bn[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 = 0)
(12) (an[2] ≥ 0∧bn[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 = 0)
(13) (an[2] ≥ 0∧bn[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 = 0)
(14) (an[2] ≥ 0∧bn[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 = 0)
(15) (an[4]=an[2]1∧+@z(cn[4], 1@z)=cn[2]1∧&&(>=@z(j[2], bn[2]), <@z(i[2], an[2]))=TRUE∧an[2]=an[4]∧i[2]=i[4]∧bn[4]=bn[2]1∧bn[2]=bn[4]∧cn[2]=cn[4]∧+@z(i[4], 1@z)=i[2]1∧j[2]=j[4]∧j[4]=j[2]1 ⇒ COND_EVAL1(TRUE, an[4], bn[4], cn[4], i[4], j[4])≥NonInfC∧COND_EVAL1(TRUE, an[4], bn[4], cn[4], i[4], j[4])≥EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(16) (>=@z(j[2], bn[2])=TRUE∧<@z(i[2], an[2])=TRUE ⇒ COND_EVAL1(TRUE, an[2], bn[2], cn[2], i[2], j[2])≥NonInfC∧COND_EVAL1(TRUE, an[2], bn[2], cn[2], i[2], j[2])≥EVAL(an[2], bn[2], +@z(cn[2], 1@z), +@z(i[2], 1@z), j[2])∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(17) (j[2] + (-1)bn[2] ≥ 0∧-1 + an[2] + (-1)i[2] ≥ 0 ⇒ (UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(18) (j[2] + (-1)bn[2] ≥ 0∧-1 + an[2] + (-1)i[2] ≥ 0 ⇒ (UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(19) (j[2] + (-1)bn[2] ≥ 0∧-1 + an[2] + (-1)i[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(20) (j[2] + (-1)bn[2] ≥ 0∧-1 + an[2] + (-1)i[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(21) (bn[2] ≥ 0∧-1 + an[2] + (-1)i[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(22) (bn[2] ≥ 0∧an[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(23) (bn[2] ≥ 0∧an[2] ≥ 0∧i[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(24) (bn[2] ≥ 0∧an[2] ≥ 0∧i[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(25) (bn[2] ≥ 0∧an[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(26) (bn[2] ≥ 0∧an[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(27) (bn[2] ≥ 0∧an[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(28) (bn[2] ≥ 0∧an[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(29) (EVAL(an[2], bn[2], cn[2], i[2], j[2])≥NonInfC∧EVAL(an[2], bn[2], cn[2], i[2], j[2])≥COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])∧(UIncreasing(COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])), ≥))
(30) ((UIncreasing(COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(31) ((UIncreasing(COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(32) ((UIncreasing(COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(33) (0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0)
(34) (i[7]=i[3]∧bn[7]=bn[3]∧cn[7]=cn[3]∧i[3]=i[2]∧bn[3]=bn[2]∧an[3]=an[2]∧an[7]=an[3]∧+@z(j[3], 1@z)=j[2]∧j[7]=j[3]∧+@z(cn[3], 1@z)=cn[2]∧&&(<@z(j[7], bn[7]), >=@z(i[7], an[7]))=TRUE ⇒ COND_EVAL3(TRUE, an[3], bn[3], cn[3], i[3], j[3])≥NonInfC∧COND_EVAL3(TRUE, an[3], bn[3], cn[3], i[3], j[3])≥EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥))
(35) (<@z(j[7], bn[7])=TRUE∧>=@z(i[7], an[7])=TRUE ⇒ COND_EVAL3(TRUE, an[7], bn[7], cn[7], i[7], j[7])≥NonInfC∧COND_EVAL3(TRUE, an[7], bn[7], cn[7], i[7], j[7])≥EVAL(an[7], bn[7], +@z(cn[7], 1@z), i[7], +@z(j[7], 1@z))∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥))
(36) (-1 + bn[7] + (-1)j[7] ≥ 0∧i[7] + (-1)an[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧-2 + (-1)Bound + (-1)j[7] + bn[7] ≥ 0∧0 ≥ 0)
(37) (-1 + bn[7] + (-1)j[7] ≥ 0∧i[7] + (-1)an[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧-2 + (-1)Bound + (-1)j[7] + bn[7] ≥ 0∧0 ≥ 0)
(38) (-1 + bn[7] + (-1)j[7] ≥ 0∧i[7] + (-1)an[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 ≥ 0∧-2 + (-1)Bound + (-1)j[7] + bn[7] ≥ 0)
(39) (-1 + bn[7] + (-1)j[7] ≥ 0∧i[7] + (-1)an[7] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧-2 + (-1)Bound + (-1)j[7] + bn[7] ≥ 0∧0 ≥ 0∧0 = 0)
(40) (-1 + bn[7] + (-1)j[7] ≥ 0∧an[7] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧-2 + (-1)Bound + (-1)j[7] + bn[7] ≥ 0∧0 ≥ 0∧0 = 0)
(41) (j[7] ≥ 0∧an[7] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧-1 + (-1)Bound + j[7] ≥ 0∧0 ≥ 0∧0 = 0)
(42) (j[7] ≥ 0∧an[7] ≥ 0∧i[7] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧-1 + (-1)Bound + j[7] ≥ 0∧0 ≥ 0∧0 = 0)
(43) (j[7] ≥ 0∧an[7] ≥ 0∧i[7] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧-1 + (-1)Bound + j[7] ≥ 0∧0 ≥ 0∧0 = 0)
(44) (j[7] ≥ 0∧an[7] ≥ 0∧i[7] ≥ 0∧bn[7] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧-1 + (-1)Bound + j[7] ≥ 0∧0 ≥ 0∧0 = 0)
(45) (j[7] ≥ 0∧an[7] ≥ 0∧i[7] ≥ 0∧bn[7] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧-1 + (-1)Bound + j[7] ≥ 0∧0 ≥ 0∧0 = 0)
(46) (j[7] ≥ 0∧an[7] ≥ 0∧i[7] ≥ 0∧bn[7] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧-1 + (-1)Bound + j[7] ≥ 0∧0 ≥ 0∧0 = 0)
(47) (j[7] ≥ 0∧an[7] ≥ 0∧i[7] ≥ 0∧bn[7] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧-1 + (-1)Bound + j[7] ≥ 0∧0 ≥ 0∧0 = 0)
(48) (an[3]=an[7]1∧i[7]=i[3]∧bn[3]=bn[7]1∧+@z(cn[3], 1@z)=cn[7]1∧bn[7]=bn[3]∧cn[7]=cn[3]∧+@z(j[3], 1@z)=j[7]1∧i[3]=i[7]1∧an[7]=an[3]∧j[7]=j[3]∧&&(<@z(j[7], bn[7]), >=@z(i[7], an[7]))=TRUE ⇒ COND_EVAL3(TRUE, an[3], bn[3], cn[3], i[3], j[3])≥NonInfC∧COND_EVAL3(TRUE, an[3], bn[3], cn[3], i[3], j[3])≥EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥))
(49) (<@z(j[7], bn[7])=TRUE∧>=@z(i[7], an[7])=TRUE ⇒ COND_EVAL3(TRUE, an[7], bn[7], cn[7], i[7], j[7])≥NonInfC∧COND_EVAL3(TRUE, an[7], bn[7], cn[7], i[7], j[7])≥EVAL(an[7], bn[7], +@z(cn[7], 1@z), i[7], +@z(j[7], 1@z))∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥))
(50) (-1 + bn[7] + (-1)j[7] ≥ 0∧i[7] + (-1)an[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧-2 + (-1)Bound + (-1)j[7] + bn[7] ≥ 0∧0 ≥ 0)
(51) (-1 + bn[7] + (-1)j[7] ≥ 0∧i[7] + (-1)an[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧-2 + (-1)Bound + (-1)j[7] + bn[7] ≥ 0∧0 ≥ 0)
(52) (i[7] + (-1)an[7] ≥ 0∧-1 + bn[7] + (-1)j[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧-2 + (-1)Bound + (-1)j[7] + bn[7] ≥ 0∧0 ≥ 0)
(53) (i[7] + (-1)an[7] ≥ 0∧-1 + bn[7] + (-1)j[7] ≥ 0 ⇒ -2 + (-1)Bound + (-1)j[7] + bn[7] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 = 0∧0 = 0)
(54) (an[7] ≥ 0∧-1 + bn[7] + (-1)j[7] ≥ 0 ⇒ -2 + (-1)Bound + (-1)j[7] + bn[7] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 = 0∧0 = 0)
(55) (an[7] ≥ 0∧j[7] ≥ 0 ⇒ -1 + (-1)Bound + j[7] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 = 0∧0 = 0)
(56) (an[7] ≥ 0∧j[7] ≥ 0∧bn[7] ≥ 0 ⇒ -1 + (-1)Bound + j[7] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 = 0∧0 = 0)
(57) (an[7] ≥ 0∧j[7] ≥ 0∧bn[7] ≥ 0 ⇒ -1 + (-1)Bound + j[7] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 = 0∧0 = 0)
(58) (an[7] ≥ 0∧j[7] ≥ 0∧bn[7] ≥ 0∧i[7] ≥ 0 ⇒ -1 + (-1)Bound + j[7] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 = 0∧0 = 0)
(59) (an[7] ≥ 0∧j[7] ≥ 0∧bn[7] ≥ 0∧i[7] ≥ 0 ⇒ -1 + (-1)Bound + j[7] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 = 0∧0 = 0)
(60) (an[7] ≥ 0∧j[7] ≥ 0∧bn[7] ≥ 0∧i[7] ≥ 0 ⇒ -1 + (-1)Bound + j[7] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 = 0∧0 = 0)
(61) (an[7] ≥ 0∧j[7] ≥ 0∧bn[7] ≥ 0∧i[7] ≥ 0 ⇒ -1 + (-1)Bound + j[7] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 = 0∧0 = 0)
(62) (EVAL(an[7], bn[7], cn[7], i[7], j[7])≥NonInfC∧EVAL(an[7], bn[7], cn[7], i[7], j[7])≥COND_EVAL3(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])), an[7], bn[7], cn[7], i[7], j[7])∧(UIncreasing(COND_EVAL3(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])), an[7], bn[7], cn[7], i[7], j[7])), ≥))
(63) ((UIncreasing(COND_EVAL3(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])), an[7], bn[7], cn[7], i[7], j[7])), ≥)∧0 ≥ 0∧0 ≥ 0)
(64) ((UIncreasing(COND_EVAL3(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])), an[7], bn[7], cn[7], i[7], j[7])), ≥)∧0 ≥ 0∧0 ≥ 0)
(65) ((UIncreasing(COND_EVAL3(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])), an[7], bn[7], cn[7], i[7], j[7])), ≥)∧0 ≥ 0∧0 ≥ 0)
(66) (0 = 0∧0 = 0∧(UIncreasing(COND_EVAL3(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])), an[7], bn[7], cn[7], i[7], j[7])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
POL(COND_EVAL3(x1, x2, x3, x4, x5, x6)) = -1 + (-1)x6 + x3 + x1
POL(>=@z(x1, x2)) = -1
POL(COND_EVAL1(x1, x2, x3, x4, x5, x6)) = -1 + (-1)x6 + x3
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = -1
POL(<@z(x1, x2)) = -1
POL(EVAL(x1, x2, x3, x4, x5)) = -1 + (-1)x5 + x2
POL(1@z) = 1
POL(undefined) = -1
EVAL(an[7], bn[7], cn[7], i[7], j[7]) → COND_EVAL3(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])), an[7], bn[7], cn[7], i[7], j[7])
COND_EVAL3(TRUE, an[3], bn[3], cn[3], i[3], j[3]) → EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))
COND_EVAL1(TRUE, an[4], bn[4], cn[4], i[4], j[4]) → EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])
EVAL(an[2], bn[2], cn[2], i[2], j[2]) → COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])
COND_EVAL3(TRUE, an[3], bn[3], cn[3], i[3], j[3]) → EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))
&&(FALSE, FALSE)1 → FALSE1
+@z1 ↔
&&(TRUE, TRUE)1 → TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 → FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDP
z
(4) -> (2), if ((+@z(i[4], 1@z) →* i[2])∧(j[4] →* j[2])∧(bn[4] →* bn[2])∧(+@z(cn[4], 1@z) →* cn[2])∧(an[4] →* an[2]))
(2) -> (4), if ((cn[2] →* cn[4])∧(i[2] →* i[4])∧(an[2] →* an[4])∧(bn[2] →* bn[4])∧(j[2] →* j[4])∧(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])) →* TRUE))
(3) -> (2), if ((i[3] →* i[2])∧(+@z(j[3], 1@z) →* j[2])∧(bn[3] →* bn[2])∧(+@z(cn[3], 1@z) →* cn[2])∧(an[3] →* an[2]))
eval(x0, x1, x2, x3, x4)
Cond_eval(TRUE, x0, x1, x2, x3, x4)
Cond_eval2(TRUE, x0, x1, x2, x3, x4)
Cond_eval3(TRUE, x0, x1, x2, x3, x4)
Cond_eval1(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDP
z
(4) -> (2), if ((+@z(i[4], 1@z) →* i[2])∧(j[4] →* j[2])∧(bn[4] →* bn[2])∧(+@z(cn[4], 1@z) →* cn[2])∧(an[4] →* an[2]))
(2) -> (4), if ((cn[2] →* cn[4])∧(i[2] →* i[4])∧(an[2] →* an[4])∧(bn[2] →* bn[4])∧(j[2] →* j[4])∧(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])) →* TRUE))
eval(x0, x1, x2, x3, x4)
Cond_eval(TRUE, x0, x1, x2, x3, x4)
Cond_eval2(TRUE, x0, x1, x2, x3, x4)
Cond_eval3(TRUE, x0, x1, x2, x3, x4)
Cond_eval1(TRUE, x0, x1, x2, x3, x4)
(1) (an[4]=an[2]1∧+@z(cn[4], 1@z)=cn[2]1∧&&(>=@z(j[2], bn[2]), <@z(i[2], an[2]))=TRUE∧an[2]=an[4]∧i[2]=i[4]∧bn[4]=bn[2]1∧bn[2]=bn[4]∧cn[2]=cn[4]∧+@z(i[4], 1@z)=i[2]1∧j[2]=j[4]∧j[4]=j[2]1 ⇒ COND_EVAL1(TRUE, an[4], bn[4], cn[4], i[4], j[4])≥NonInfC∧COND_EVAL1(TRUE, an[4], bn[4], cn[4], i[4], j[4])≥EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(2) (>=@z(j[2], bn[2])=TRUE∧<@z(i[2], an[2])=TRUE ⇒ COND_EVAL1(TRUE, an[2], bn[2], cn[2], i[2], j[2])≥NonInfC∧COND_EVAL1(TRUE, an[2], bn[2], cn[2], i[2], j[2])≥EVAL(an[2], bn[2], +@z(cn[2], 1@z), +@z(i[2], 1@z), j[2])∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(3) (j[2] + (-1)bn[2] ≥ 0∧-1 + an[2] + (-1)i[2] ≥ 0 ⇒ (UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧(-1)Bound + j[2] + (-1)i[2] + (-1)bn[2] + an[2] ≥ 0∧0 ≥ 0)
(4) (j[2] + (-1)bn[2] ≥ 0∧-1 + an[2] + (-1)i[2] ≥ 0 ⇒ (UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧(-1)Bound + j[2] + (-1)i[2] + (-1)bn[2] + an[2] ≥ 0∧0 ≥ 0)
(5) (-1 + an[2] + (-1)i[2] ≥ 0∧j[2] + (-1)bn[2] ≥ 0 ⇒ (-1)Bound + j[2] + (-1)i[2] + (-1)bn[2] + an[2] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(6) (-1 + an[2] + (-1)i[2] ≥ 0∧j[2] + (-1)bn[2] ≥ 0 ⇒ 0 = 0∧0 = 0∧(-1)Bound + j[2] + (-1)i[2] + (-1)bn[2] + an[2] ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 ≥ 0)
(7) (-1 + an[2] + (-1)i[2] ≥ 0∧bn[2] ≥ 0 ⇒ 0 = 0∧0 = 0∧(-1)Bound + (-1)i[2] + bn[2] + an[2] ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 ≥ 0)
(8) (an[2] ≥ 0∧bn[2] ≥ 0 ⇒ 0 = 0∧0 = 0∧1 + (-1)Bound + bn[2] + an[2] ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 ≥ 0)
(9) (an[2] ≥ 0∧bn[2] ≥ 0∧i[2] ≥ 0 ⇒ 0 = 0∧0 = 0∧1 + (-1)Bound + bn[2] + an[2] ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 ≥ 0)
(10) (an[2] ≥ 0∧bn[2] ≥ 0∧i[2] ≥ 0 ⇒ 0 = 0∧0 = 0∧1 + (-1)Bound + bn[2] + an[2] ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 ≥ 0)
(11) (an[2] ≥ 0∧bn[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ 0 = 0∧0 = 0∧1 + (-1)Bound + bn[2] + an[2] ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 ≥ 0)
(12) (an[2] ≥ 0∧bn[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ 0 = 0∧0 = 0∧1 + (-1)Bound + bn[2] + an[2] ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 ≥ 0)
(13) (an[2] ≥ 0∧bn[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ 0 = 0∧0 = 0∧1 + (-1)Bound + bn[2] + an[2] ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 ≥ 0)
(14) (an[2] ≥ 0∧bn[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ 0 = 0∧0 = 0∧1 + (-1)Bound + bn[2] + an[2] ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧0 ≥ 0)
(15) (EVAL(an[2], bn[2], cn[2], i[2], j[2])≥NonInfC∧EVAL(an[2], bn[2], cn[2], i[2], j[2])≥COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])∧(UIncreasing(COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])), ≥))
(16) ((UIncreasing(COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(17) ((UIncreasing(COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(18) (0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])), ≥)∧0 ≥ 0)
(19) (0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])), ≥)∧0 = 0∧0 = 0)
POL(>=@z(x1, x2)) = -1
POL(COND_EVAL1(x1, x2, x3, x4, x5, x6)) = -1 + x6 + (-1)x5 + (-1)x3 + x2 + (-1)x1
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = 2
POL(<@z(x1, x2)) = -1
POL(EVAL(x1, x2, x3, x4, x5)) = x5 + (-1)x4 + (-1)x2 + x1
POL(1@z) = 1
POL(undefined) = -1
COND_EVAL1(TRUE, an[4], bn[4], cn[4], i[4], j[4]) → EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])
COND_EVAL1(TRUE, an[4], bn[4], cn[4], i[4], j[4]) → EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])
EVAL(an[2], bn[2], cn[2], i[2], j[2]) → COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])
FALSE1 → &&(FALSE, FALSE)1
+@z1 ↔
&&(TRUE, TRUE)1 ↔ TRUE1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDP
z
eval(x0, x1, x2, x3, x4)
Cond_eval(TRUE, x0, x1, x2, x3, x4)
Cond_eval2(TRUE, x0, x1, x2, x3, x4)
Cond_eval3(TRUE, x0, x1, x2, x3, x4)
Cond_eval1(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
(4) -> (2), if ((+@z(i[4], 1@z) →* i[2])∧(j[4] →* j[2])∧(bn[4] →* bn[2])∧(+@z(cn[4], 1@z) →* cn[2])∧(an[4] →* an[2]))
(2) -> (4), if ((cn[2] →* cn[4])∧(i[2] →* i[4])∧(an[2] →* an[4])∧(bn[2] →* bn[4])∧(j[2] →* j[4])∧(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])) →* TRUE))
(4) -> (7), if ((+@z(i[4], 1@z) →* i[7])∧(j[4] →* j[7])∧(bn[4] →* bn[7])∧(+@z(cn[4], 1@z) →* cn[7])∧(an[4] →* an[7]))
eval(x0, x1, x2, x3, x4)
Cond_eval(TRUE, x0, x1, x2, x3, x4)
Cond_eval2(TRUE, x0, x1, x2, x3, x4)
Cond_eval3(TRUE, x0, x1, x2, x3, x4)
Cond_eval1(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
z
(4) -> (2), if ((+@z(i[4], 1@z) →* i[2])∧(j[4] →* j[2])∧(bn[4] →* bn[2])∧(+@z(cn[4], 1@z) →* cn[2])∧(an[4] →* an[2]))
(2) -> (4), if ((cn[2] →* cn[4])∧(i[2] →* i[4])∧(an[2] →* an[4])∧(bn[2] →* bn[4])∧(j[2] →* j[4])∧(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])) →* TRUE))
eval(x0, x1, x2, x3, x4)
Cond_eval(TRUE, x0, x1, x2, x3, x4)
Cond_eval2(TRUE, x0, x1, x2, x3, x4)
Cond_eval3(TRUE, x0, x1, x2, x3, x4)
Cond_eval1(TRUE, x0, x1, x2, x3, x4)
(1) (EVAL(an[2], bn[2], cn[2], i[2], j[2])≥NonInfC∧EVAL(an[2], bn[2], cn[2], i[2], j[2])≥COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])∧(UIncreasing(COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])), ≥))
(2) ((UIncreasing(COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])), ≥)∧0 ≥ 0)
(5) (0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])), ≥)∧0 = 0∧0 = 0)
(6) (an[4]=an[2]1∧+@z(cn[4], 1@z)=cn[2]1∧&&(>=@z(j[2], bn[2]), <@z(i[2], an[2]))=TRUE∧an[2]=an[4]∧i[2]=i[4]∧bn[4]=bn[2]1∧bn[2]=bn[4]∧cn[2]=cn[4]∧+@z(i[4], 1@z)=i[2]1∧j[2]=j[4]∧j[4]=j[2]1 ⇒ COND_EVAL1(TRUE, an[4], bn[4], cn[4], i[4], j[4])≥NonInfC∧COND_EVAL1(TRUE, an[4], bn[4], cn[4], i[4], j[4])≥EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(7) (>=@z(j[2], bn[2])=TRUE∧<@z(i[2], an[2])=TRUE ⇒ COND_EVAL1(TRUE, an[2], bn[2], cn[2], i[2], j[2])≥NonInfC∧COND_EVAL1(TRUE, an[2], bn[2], cn[2], i[2], j[2])≥EVAL(an[2], bn[2], +@z(cn[2], 1@z), +@z(i[2], 1@z), j[2])∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(8) (j[2] + (-1)bn[2] ≥ 0∧-1 + an[2] + (-1)i[2] ≥ 0 ⇒ (UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧-1 + (-1)Bound + j[2] + (-1)i[2] + (-1)bn[2] + an[2] ≥ 0∧0 ≥ 0)
(9) (j[2] + (-1)bn[2] ≥ 0∧-1 + an[2] + (-1)i[2] ≥ 0 ⇒ (UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥)∧-1 + (-1)Bound + j[2] + (-1)i[2] + (-1)bn[2] + an[2] ≥ 0∧0 ≥ 0)
(10) (j[2] + (-1)bn[2] ≥ 0∧-1 + an[2] + (-1)i[2] ≥ 0 ⇒ 0 ≥ 0∧-1 + (-1)Bound + j[2] + (-1)i[2] + (-1)bn[2] + an[2] ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(11) (j[2] + (-1)bn[2] ≥ 0∧-1 + an[2] + (-1)i[2] ≥ 0 ⇒ -1 + (-1)Bound + j[2] + (-1)i[2] + (-1)bn[2] + an[2] ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(12) (bn[2] ≥ 0∧-1 + an[2] + (-1)i[2] ≥ 0 ⇒ -1 + (-1)Bound + (-1)i[2] + bn[2] + an[2] ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(13) (bn[2] ≥ 0∧an[2] ≥ 0 ⇒ (-1)Bound + bn[2] + an[2] ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(14) (bn[2] ≥ 0∧an[2] ≥ 0∧i[2] ≥ 0 ⇒ (-1)Bound + bn[2] + an[2] ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(15) (bn[2] ≥ 0∧an[2] ≥ 0∧i[2] ≥ 0 ⇒ (-1)Bound + bn[2] + an[2] ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(16) (bn[2] ≥ 0∧an[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ (-1)Bound + bn[2] + an[2] ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(17) (bn[2] ≥ 0∧an[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ (-1)Bound + bn[2] + an[2] ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(18) (bn[2] ≥ 0∧an[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ (-1)Bound + bn[2] + an[2] ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
(19) (bn[2] ≥ 0∧an[2] ≥ 0∧i[2] ≥ 0∧j[2] ≥ 0 ⇒ (-1)Bound + bn[2] + an[2] ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])), ≥))
POL(>=@z(x1, x2)) = -1
POL(COND_EVAL1(x1, x2, x3, x4, x5, x6)) = x6 + (-1)x5 + (-1)x3 + x2 + (-1)x1
POL(TRUE) = 1
POL(&&(x1, x2)) = 1
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = 1
POL(<@z(x1, x2)) = -1
POL(EVAL(x1, x2, x3, x4, x5)) = -1 + x5 + (-1)x4 + (-1)x2 + x1
POL(1@z) = 1
POL(undefined) = -1
COND_EVAL1(TRUE, an[4], bn[4], cn[4], i[4], j[4]) → EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])
COND_EVAL1(TRUE, an[4], bn[4], cn[4], i[4], j[4]) → EVAL(an[4], bn[4], +@z(cn[4], 1@z), +@z(i[4], 1@z), j[4])
EVAL(an[2], bn[2], cn[2], i[2], j[2]) → COND_EVAL1(&&(>=@z(j[2], bn[2]), <@z(i[2], an[2])), an[2], bn[2], cn[2], i[2], j[2])
&&(FALSE, FALSE)1 ↔ FALSE1
+@z1 ↔
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
&&(FALSE, TRUE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
eval(x0, x1, x2, x3, x4)
Cond_eval(TRUE, x0, x1, x2, x3, x4)
Cond_eval2(TRUE, x0, x1, x2, x3, x4)
Cond_eval3(TRUE, x0, x1, x2, x3, x4)
Cond_eval1(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
z
(0) -> (2), if ((+@z(i[0], 1@z) →* i[2])∧(j[0] →* j[2])∧(bn[0] →* bn[2])∧(+@z(cn[0], 1@z) →* cn[2])∧(an[0] →* an[2]))
(3) -> (2), if ((i[3] →* i[2])∧(+@z(j[3], 1@z) →* j[2])∧(bn[3] →* bn[2])∧(+@z(cn[3], 1@z) →* cn[2])∧(an[3] →* an[2]))
(3) -> (7), if ((i[3] →* i[7])∧(+@z(j[3], 1@z) →* j[7])∧(bn[3] →* bn[7])∧(+@z(cn[3], 1@z) →* cn[7])∧(an[3] →* an[7]))
(7) -> (3), if ((cn[7] →* cn[3])∧(i[7] →* i[3])∧(an[7] →* an[3])∧(bn[7] →* bn[3])∧(j[7] →* j[3])∧(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])) →* TRUE))
(0) -> (7), if ((+@z(i[0], 1@z) →* i[7])∧(j[0] →* j[7])∧(bn[0] →* bn[7])∧(+@z(cn[0], 1@z) →* cn[7])∧(an[0] →* an[7]))
eval(x0, x1, x2, x3, x4)
Cond_eval(TRUE, x0, x1, x2, x3, x4)
Cond_eval2(TRUE, x0, x1, x2, x3, x4)
Cond_eval3(TRUE, x0, x1, x2, x3, x4)
Cond_eval1(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
z
(3) -> (7), if ((i[3] →* i[7])∧(+@z(j[3], 1@z) →* j[7])∧(bn[3] →* bn[7])∧(+@z(cn[3], 1@z) →* cn[7])∧(an[3] →* an[7]))
(7) -> (3), if ((cn[7] →* cn[3])∧(i[7] →* i[3])∧(an[7] →* an[3])∧(bn[7] →* bn[3])∧(j[7] →* j[3])∧(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])) →* TRUE))
eval(x0, x1, x2, x3, x4)
Cond_eval(TRUE, x0, x1, x2, x3, x4)
Cond_eval2(TRUE, x0, x1, x2, x3, x4)
Cond_eval3(TRUE, x0, x1, x2, x3, x4)
Cond_eval1(TRUE, x0, x1, x2, x3, x4)
(1) (an[3]=an[7]1∧i[7]=i[3]∧bn[3]=bn[7]1∧+@z(cn[3], 1@z)=cn[7]1∧bn[7]=bn[3]∧cn[7]=cn[3]∧+@z(j[3], 1@z)=j[7]1∧i[3]=i[7]1∧an[7]=an[3]∧j[7]=j[3]∧&&(<@z(j[7], bn[7]), >=@z(i[7], an[7]))=TRUE ⇒ COND_EVAL3(TRUE, an[3], bn[3], cn[3], i[3], j[3])≥NonInfC∧COND_EVAL3(TRUE, an[3], bn[3], cn[3], i[3], j[3])≥EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥))
(2) (<@z(j[7], bn[7])=TRUE∧>=@z(i[7], an[7])=TRUE ⇒ COND_EVAL3(TRUE, an[7], bn[7], cn[7], i[7], j[7])≥NonInfC∧COND_EVAL3(TRUE, an[7], bn[7], cn[7], i[7], j[7])≥EVAL(an[7], bn[7], +@z(cn[7], 1@z), i[7], +@z(j[7], 1@z))∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥))
(3) (-1 + bn[7] + (-1)j[7] ≥ 0∧i[7] + (-1)an[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧(-1)Bound + (-1)j[7] + i[7] + bn[7] + (-1)an[7] ≥ 0∧0 ≥ 0)
(4) (-1 + bn[7] + (-1)j[7] ≥ 0∧i[7] + (-1)an[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧(-1)Bound + (-1)j[7] + i[7] + bn[7] + (-1)an[7] ≥ 0∧0 ≥ 0)
(5) (i[7] + (-1)an[7] ≥ 0∧-1 + bn[7] + (-1)j[7] ≥ 0 ⇒ (UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧0 ≥ 0∧(-1)Bound + (-1)j[7] + i[7] + bn[7] + (-1)an[7] ≥ 0)
(6) (i[7] + (-1)an[7] ≥ 0∧-1 + bn[7] + (-1)j[7] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧(-1)Bound + (-1)j[7] + i[7] + bn[7] + (-1)an[7] ≥ 0∧0 ≥ 0∧0 = 0)
(7) (an[7] ≥ 0∧-1 + bn[7] + (-1)j[7] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧(-1)Bound + (-1)j[7] + bn[7] + an[7] ≥ 0∧0 ≥ 0∧0 = 0)
(8) (an[7] ≥ 0∧j[7] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧1 + (-1)Bound + j[7] + an[7] ≥ 0∧0 ≥ 0∧0 = 0)
(9) (an[7] ≥ 0∧j[7] ≥ 0∧bn[7] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧1 + (-1)Bound + j[7] + an[7] ≥ 0∧0 ≥ 0∧0 = 0)
(10) (an[7] ≥ 0∧j[7] ≥ 0∧bn[7] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧1 + (-1)Bound + j[7] + an[7] ≥ 0∧0 ≥ 0∧0 = 0)
(11) (an[7] ≥ 0∧j[7] ≥ 0∧bn[7] ≥ 0∧i[7] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧1 + (-1)Bound + j[7] + an[7] ≥ 0∧0 ≥ 0∧0 = 0)
(12) (an[7] ≥ 0∧j[7] ≥ 0∧bn[7] ≥ 0∧i[7] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧1 + (-1)Bound + j[7] + an[7] ≥ 0∧0 ≥ 0∧0 = 0)
(13) (an[7] ≥ 0∧j[7] ≥ 0∧bn[7] ≥ 0∧i[7] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧1 + (-1)Bound + j[7] + an[7] ≥ 0∧0 ≥ 0∧0 = 0)
(14) (an[7] ≥ 0∧j[7] ≥ 0∧bn[7] ≥ 0∧i[7] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))), ≥)∧1 + (-1)Bound + j[7] + an[7] ≥ 0∧0 ≥ 0∧0 = 0)
(15) (EVAL(an[7], bn[7], cn[7], i[7], j[7])≥NonInfC∧EVAL(an[7], bn[7], cn[7], i[7], j[7])≥COND_EVAL3(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])), an[7], bn[7], cn[7], i[7], j[7])∧(UIncreasing(COND_EVAL3(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])), an[7], bn[7], cn[7], i[7], j[7])), ≥))
(16) ((UIncreasing(COND_EVAL3(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])), an[7], bn[7], cn[7], i[7], j[7])), ≥)∧0 ≥ 0∧0 ≥ 0)
(17) ((UIncreasing(COND_EVAL3(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])), an[7], bn[7], cn[7], i[7], j[7])), ≥)∧0 ≥ 0∧0 ≥ 0)
(18) ((UIncreasing(COND_EVAL3(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])), an[7], bn[7], cn[7], i[7], j[7])), ≥)∧0 ≥ 0∧0 ≥ 0)
(19) ((UIncreasing(COND_EVAL3(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])), an[7], bn[7], cn[7], i[7], j[7])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0)
POL(>=@z(x1, x2)) = -1
POL(COND_EVAL3(x1, x2, x3, x4, x5, x6)) = -1 + (-1)x6 + x5 + x3 + (-1)x2 + (-1)x1
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = 2
POL(<@z(x1, x2)) = -1
POL(EVAL(x1, x2, x3, x4, x5)) = (-1)x5 + x4 + x2 + (-1)x1
POL(1@z) = 1
POL(undefined) = -1
COND_EVAL3(TRUE, an[3], bn[3], cn[3], i[3], j[3]) → EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))
COND_EVAL3(TRUE, an[3], bn[3], cn[3], i[3], j[3]) → EVAL(an[3], bn[3], +@z(cn[3], 1@z), i[3], +@z(j[3], 1@z))
EVAL(an[7], bn[7], cn[7], i[7], j[7]) → COND_EVAL3(&&(<@z(j[7], bn[7]), >=@z(i[7], an[7])), an[7], bn[7], cn[7], i[7], j[7])
FALSE1 → &&(FALSE, FALSE)1
+@z1 ↔
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
z
eval(x0, x1, x2, x3, x4)
Cond_eval(TRUE, x0, x1, x2, x3, x4)
Cond_eval2(TRUE, x0, x1, x2, x3, x4)
Cond_eval3(TRUE, x0, x1, x2, x3, x4)
Cond_eval1(TRUE, x0, x1, x2, x3, x4)